题目内容
已知数列{an}中a1=3,a2=5,其前n项和满足:Sn+Sn-2=2Sn-1+2n-1(n≥3).
(1)试求数列{an}的通项公式;
(2)令bn=
,Tn是数列{bn}的前n项和,证明:Tn<
;
(3)证明:对任意的m∈(0,
),均存在n0∈N*,使得(2)中的Tn>m成立.
(1)解:由Sn+Sn-2=2Sn-1+2n-1(n≥3)得Sn-Sn-1=Sn-1-Sn-2+2n-1(n≥3),
∴an=an-1+2n-1
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n-1+2n-2+…+22+5=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1;
(2)证明:∵bn=
=
,
∴Tn=b1+b2+…+bn=
[(
-
)+(
)+…+
]=
<
(3)证明:由(2)可知Tn=
,
若Tn>m,则得
,化简得
.
∵m∈(0,
),∴1-6m>0,∴
,∴n>
,
当
<1,即0<m<
时,取n0=1即可,
当
≥1,即
时,则记
的整数部分为S,取n0=S+1即可,
综上可知:对任意的m∈(0,
),均存在n0∈N*,使得(2)中的Tn>m成立.
分析:(1)由Sn+Sn-2=2Sn-1+2n-1(n≥3)得an=an-1+2n-1(n≥3),利用an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2,即可求得结论;
(2)bn=
=
,从而可求Tn,即可证得结论;
(3)由(2)可知Tn=
,若Tn>m,则得
,化简得
,根据m∈(0,
),可得n>
,分类讨论,即可求得结论.
点评:本题考查数列的通项与求和,考查不等式的证明,解题的关键是累加法求通项,裂项相消法求和,属于中档题.
∴an=an-1+2n-1
∴an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2=2n-1+2n-2+…+22+5=2n+1(n≥3)
检验知n=1、2时,结论也成立,故an=2n+1;
(2)证明:∵bn=
∴Tn=b1+b2+…+bn=
(3)证明:由(2)可知Tn=
若Tn>m,则得
∵m∈(0,
当
当
综上可知:对任意的m∈(0,
分析:(1)由Sn+Sn-2=2Sn-1+2n-1(n≥3)得an=an-1+2n-1(n≥3),利用an=(an-an-1)+(an-1-an-2)+…+(a3-a2)+a2,即可求得结论;
(2)bn=
(3)由(2)可知Tn=
点评:本题考查数列的通项与求和,考查不等式的证明,解题的关键是累加法求通项,裂项相消法求和,属于中档题.
练习册系列答案
相关题目