题目内容
函数f(x)=cosx(cosx+sinx),x∈[0,
]的值域是( )
| π |
| 4 |
A.[1,
| B.[0,
| C.[
| D.[
|
∵f(x)=cosx(cosx+sinx)=cos2x+sinxcosx
=
+
sin2x=
+
(sin2x+cos2x)=
+
sin(2x+
)
又∵0≤x≤
∴
≤2x+
≤
∴
≤sin(2x+
)≤1
则1≤f(x)≤
故选A.
=
| 1+cos2x |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 4 |
又∵0≤x≤
| π |
| 4 |
| π |
| 4 |
| π |
| 4 |
| 3π |
| 4 |
∴
| ||
| 2 |
| π |
| 4 |
则1≤f(x)≤
1+
| ||
| 2 |
故选A.
练习册系列答案
相关题目