题目内容
设数列{a
}的首项a
=1,前n项和S
满足关系式:3tS
-(2t+3)S
=3t(t>0,n=2,3,4…).(1)求证:数列{a
}是等比数列;(2)设数列{a
}的公比为f(t),若数列{b
}满足:b
=1,b
=f(
)(n=2,3,4…),求
;(3) 对于(2)中的数列{b
},求b
b
-b
b
+b
b
-…+(-1)
b
b
的和。
(Ⅰ)见解析 (Ⅱ) 
(Ⅲ)b
b
-b
b
+b
b
-…+(-1)
b
b
=
:(1)由S
= a
=1,S
= a
+a
=1+a
,
3t(1+a
)-(2t+3)=3t,∴a
=
∴
=
又3tS
-(2t+3)S
=3t,3tS
-(2t+3)S
=3t两式相减
得3ta
-(2t+3)a
="0" ∴
=
( n=,3,4…)
∴{a
}是首项a
=1,公比为
等比数列.
(2)∵f(t)=
=
+
,∴b
=f(
)=
+b
{b
}是首项为1,公差为
的等差数列,∴b
=1+
(n-1)=
又由(1)知a
=(
)
,lga
=(n-1)lg

=
=

(3) 由b
=
,可知{b
},{b
}分别是首项为1和
,公差均为
的等差数列,∴b
=
,b
=
当n="2m(m=1,2,3," …)时,
b
b
-b
b
+b
b
-b
b
+…+b
b
-b
b
=b
(b
-b
)+b
(b
-b
)+…+b
(b
-b
)=-
(b
+b
+…+b
)
=-
=-
=-
当n="2m-1(m=1,2,3," …)时,
b
b
-b
b
+b
b
-b
b
+…-b
b
+b
b
=-
+ b
b
=-
+
=
=
∴b
b
-b
b
+b
b
-…+(-1)
b
b
=
3t(1+a
又3tS
得3ta
∴{a
(2)∵f(t)=
{b
又由(1)知a
(3) 由b
b
=b
=-
当n="2m-1(m=1,2,3," …)时,
b
=-
=
∴b
练习册系列答案
相关题目