题目内容
已知函数f(x)=2cos2(x+
)+sin2x.
(Ⅰ)求它的最小正周期T;
(Ⅱ)若f(α)=
,α∈(0,π),求α的值;
(Ⅲ)求f(x)的单调增区间.
| π |
| 12 |
(Ⅰ)求它的最小正周期T;
(Ⅱ)若f(α)=
| 3 |
| 2 |
(Ⅲ)求f(x)的单调增区间.
分析:(Ⅰ)化简 f(x)的解析式为sin(2x+
)+1,故它的最小正周期T=
=π.
(Ⅱ)由 f(α)=
,α∈(0,π),可得 sin(2α+
)=
,2α+
=
或
,由此求得 α的值.
(Ⅲ)由 2kπ-
≤2α+
≤2kπ+
,k∈z,求得x的范围,即可得到f(x)的单调增区间.
| π |
| 3 |
| 2π |
| 2 |
(Ⅱ)由 f(α)=
| 3 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| 5π |
| 6 |
| 13π |
| 6 |
(Ⅲ)由 2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
解答:解:(Ⅰ)∵f(x)=2cos2(x+
)+sin2x=1+cos2(x+
)+sin2x=
sin2x+
cos2x+1=sin(2x+
)+1,
∴它的最小正周期T=
=π.,
(Ⅱ)∵f(α)=
,α∈(0,π),∴sin(2α+
)+1=
,∴sin(2α+
)=
.
∵α∈(0,π),∴2α+
∈(
,
),∴2α+
=
或
,∴α=
或
.
(Ⅲ)由 2kπ-
≤2α+
≤2kπ+
,k∈z,可得 kπ-
≤α≤kπ+
,k∈z,
∴f(x)的单调增区间为[kπ-
,kπ+
],k∈z.
| π |
| 12 |
| π |
| 12 |
| 1 |
| 2 |
| ||
| 2 |
| π |
| 3 |
∴它的最小正周期T=
| 2π |
| 2 |
(Ⅱ)∵f(α)=
| 3 |
| 2 |
| π |
| 3 |
| 3 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
∵α∈(0,π),∴2α+
| π |
| 3 |
| π |
| 3 |
| 7π |
| 3 |
| π |
| 3 |
| 5π |
| 6 |
| 13π |
| 6 |
| π |
| 4 |
| 11π |
| 12 |
(Ⅲ)由 2kπ-
| π |
| 2 |
| π |
| 3 |
| π |
| 2 |
| 5π |
| 12 |
| π |
| 12 |
∴f(x)的单调增区间为[kπ-
| 5π |
| 12 |
| π |
| 12 |
点评:本题主要考查三角函数的恒等变换及化简求值,正弦函数的单调性、周期性,属于中档题.
练习册系列答案
相关题目