题目内容
已知函数f(x)=2sin(ωx-
)sin(ωx+
)(其中ω为正常数,x∈R)的最小正周期为π.
(1)求ω的值;
(2)在△ABC中,若A<B,且f(A)=f(B)=
,求
.
| π |
| 6 |
| π |
| 3 |
(1)求ω的值;
(2)在△ABC中,若A<B,且f(A)=f(B)=
| 1 |
| 2 |
| BC |
| AB |
(1)∵f(x)=2sin(ωx-
)sin(ωx+
)=2sin(ωx-
)cos[(ωx+
)-
]
=2sin(ωx-
)cos(ωx-
)=sin(2ωx-
).(4分)
而f(x)的最小正周期为π,ω为正常数,
∴
=π,解之,得ω=1.(6分)
(2)由(1)得f(x)=sin(2x-
).
若x是三角形的内角,则0<x<π,
∴-
<2x-
<
.
令f(x)=
,得sin(2x-
)=
,
∴2x-
=
或2x-
=
,
解之,得x=
或x=
.
由已知,A,B是△ABC的内角,A<B且f(A)=f(B)=
,
∴A=
,B=
,∴
C=π-A-B=
.(10分)
又由正弦定理,得
=
=
=
=
.(12分)
| π |
| 6 |
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| π |
| 2 |
=2sin(ωx-
| π |
| 6 |
| π |
| 6 |
| π |
| 3 |
而f(x)的最小正周期为π,ω为正常数,
∴
| 2π |
| 2ω |
(2)由(1)得f(x)=sin(2x-
| π |
| 3 |
若x是三角形的内角,则0<x<π,
∴-
| π |
| 3 |
| π |
| 3 |
| 5π |
| 3 |
令f(x)=
| 1 |
| 2 |
| π |
| 3 |
| 1 |
| 2 |
∴2x-
| π |
| 3 |
| π |
| 6 |
| π |
| 3 |
| 5π |
| 6 |
解之,得x=
| π |
| 4 |
| 7π |
| 12 |
由已知,A,B是△ABC的内角,A<B且f(A)=f(B)=
| 1 |
| 2 |
∴A=
| π |
| 4 |
| 7π |
| 12 |
C=π-A-B=
| π |
| 6 |
又由正弦定理,得
| BC |
| AB |
| sinA |
| sinC |
sin
| ||
sin
|
| ||||
|
| 2 |
练习册系列答案
相关题目