题目内容
已知数列{bn}中,b1=
,bn+1bn=bn+2.数列{an}满足:an=
(n∈N*)
(Ⅰ)求证:an+1+2an+1=0;
(Ⅱ) 求数列{an}的通项公式;
(Ⅲ) 求证:(-1)b1+(-1)2b2+…+(-1)nbn<1(n∈N*)
| 11 |
| 7 |
| 1 |
| bn-2 |
(Ⅰ)求证:an+1+2an+1=0;
(Ⅱ) 求数列{an}的通项公式;
(Ⅲ) 求证:(-1)b1+(-1)2b2+…+(-1)nbn<1(n∈N*)
分析:(Ⅰ) 由已知,得出an+1=
=
=
= -1+
=-2an-1,移向整理即可.
(Ⅱ)在(Ⅰ) 的基础上,构造出an+1+
=-2 (an+
),通过求出{an+
}的通项公式,得出{an}的通项公式.
(Ⅲ)由上应得出(-1)nbn=2•(-1)n+
,考虑到(-1)n的取值,宜相邻两项结合,借助放缩法寻求解决.
| 1 |
| bn+1-2 |
| 1 | ||
|
| bn |
| 2-bn |
| 2 |
| 2-bn |
(Ⅱ)在(Ⅰ) 的基础上,构造出an+1+
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 3 |
(Ⅲ)由上应得出(-1)nbn=2•(-1)n+
| 1 | ||
2n-
|
解答:证明:(Ⅰ)an+1=
=
=
= -1+
=-2an-1,移向整理得an+1+2an+1=0
解:(Ⅱ)∵an+1=-2an-1∴an+1+
=-2 (an+
)
又 a1+
=-2 ≠0∴{an+
}为等比数列
∴an+
=(-2)n∴an=(-2)n-
证明:(Ⅲ)bn=
+2=
+2∴(-1)nbn=2•(-1)n+
①当n为奇数时(-1)nbn+(-1)n+1bn+1=
+
=
<
=
+
(-1)b1+(-1)2b2+…+(-1)nbn<
+
+…+
+
-2+
<
-2+
=
-1<1
②当n为偶数时,(-1)b1+(-1)2b2+…+(-1)nbn<
+
+…+
+
<
=1
综上所述,(-1)b1+(-1)2b2+…+(-1)nbn<1
| 1 |
| bn+1-2 |
| 1 | ||
|
| bn |
| 2-bn |
| 2 |
| 2-bn |
解:(Ⅱ)∵an+1=-2an-1∴an+1+
| 1 |
| 3 |
| 1 |
| 3 |
又 a1+
| 1 |
| 3 |
| 1 |
| 3 |
∴an+
| 1 |
| 3 |
| 1 |
| 3 |
证明:(Ⅲ)bn=
| 1 |
| an |
| 1 | ||
(-2)n-
|
| 1 | ||
2n-
|
①当n为奇数时(-1)nbn+(-1)n+1bn+1=
| 1 | ||
2n+
|
| 1 | ||
2n+1-
|
| 2n+2n+1 | ||||
(2n+
|
| 2n+2n+1 |
| 2n•2n+1 |
| 1 |
| 2n |
| 1 |
| 2n+1 |
(-1)b1+(-1)2b2+…+(-1)nbn<
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-2 |
| 1 |
| 2n-1 |
| 1 | ||
2n+
|
| ||
1-
|
| 1 | ||
2n+
|
| 1 | ||
2n+
|
②当n为偶数时,(-1)b1+(-1)2b2+…+(-1)nbn<
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n-1 |
| 1 |
| 2n |
| ||
1-
|
综上所述,(-1)b1+(-1)2b2+…+(-1)nbn<1
点评:本题是数列与不等式的综合.考查数列的递推关系,通项公式、不等式的证明.考查变形、构造、转化、计算的能力.
练习册系列答案
相关题目