题目内容
已知数列{an}的前n项和Sn=-an-(
)n-1+2(n为正整数).
(1)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(2)令cn=
an,若Tn=c1+c2+…+cn,求Tn.
| 1 |
| 2 |
(1)令bn=2nan,求证数列{bn}是等差数列,并求数列{an}的通项公式;
(2)令cn=
| n+1 |
| n |
分析:(1)根据数列{an}的前n项和Sn=-an-(
)n-1+2(n为正整数)利用an=
得出2nan=2n-1an-1+1再利用bn=2nan,可得当n≥2时bn-bn-1=1即得出数列{bn}是等差数列,进而可求出bn然后求出an.
(2)由(1)可求出cn=(n+1)(
)n再结合其表达式的特征知可用错位相减法求Tn.
| 1 |
| 2 |
|
(2)由(1)可求出cn=(n+1)(
| 1 |
| 2 |
解答:解:(1)在Sn=-an-(
)n-1+2中令n=1可得s1=-a1-1+2=a1即a1=
当n≥2时an=Sn-Sn-1=-an+an-1+(
)n-2
∴2an=an-1+(
)n-2即2nan=2n-1an-1+1
∵bn=2nan,
∴bn-bn-1=1即当n≥2时bn-bn-1=1
又∵b1=2a1=1
∴数列{bn}是首项和公差均为1的等差数列.
∴bn=1+(n-1)×1=n=2nan
∴an=
(2)由(1)得cn=(n+1)(
)n,
∴Tn=2×
+3×(
)2+4×(
)3+…+(n+1)(
)n ①
Tn=2×(
)2+3×(
)3+4×(
)4+…+(n+1)(
)n+1 ②
由①-②得
Tn=1+(
)2+(
)3+…+(
)n-(n+1)(
)n+1=
-(n+3)(
)n+1
∴Tn=3-(n+3)(
)n+1
| 1 |
| 2 |
| 1 |
| 2 |
当n≥2时an=Sn-Sn-1=-an+an-1+(
| 1 |
| 2 |
∴2an=an-1+(
| 1 |
| 2 |
∵bn=2nan,
∴bn-bn-1=1即当n≥2时bn-bn-1=1
又∵b1=2a1=1
∴数列{bn}是首项和公差均为1的等差数列.
∴bn=1+(n-1)×1=n=2nan
∴an=
| n |
| 2n |
(2)由(1)得cn=(n+1)(
| 1 |
| 2 |
∴Tn=2×
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
由①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 2 |
| 1 |
| 2 |
∴Tn=3-(n+3)(
| 1 |
| 2 |
点评:本题主要考查了数列通项公式的求解和数列的求和,属常考题,较难.解题的关键是公式an=
以及错位相减法求和的应用!
|
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |