题目内容
设数列{an}满足a1=2,an+1=an+3•2n-1.(1)求数列{an}的通项公式an;
(2)令bn=nan,求数列{bn}的前n项和Sn;
(3)令cn=log2
【答案】分析:(1)累加法:注意验证n=1的情形;
(2)表示出bn,然后利用分组求和得,Sn=3[(1•2+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],令x=1•2+2•21+3•22+…+n•2n-1,运用错位相减法可得x,代入Sn即可;
(3)由
可得cn,利用裂项相消法可化简
,由其结果可得证;
解答:解:(1)∵a1=2,
,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=2+3×2+3×21+3×22+…+3×2n-2
=2+3(2+21+22+…+2n-2)
=2+3×
=3×2n-1-1(n≥2),
经验证n=1也成立,∴
;
(2)
,
,
,
,…,
,
∴Sn=3[(1•2+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],
设x=1•2+2•21+3•22+…+n•2n-1①,则2x=1•21+2•22+3•23+…+n•2n②,
①-②得,-x=1+21+22+23+…+2n-1-n•2n
=1+
-n•2n=-1+(1-n)•2n,
∴x=(n-1)2n+1,
∴Sn=3[(n-1)2n+1-
],
∴Sn=
;
(3)∵
;
∴cn=log22n-1=n-1,
=
=1-
+…
=1-
<1.
点评:本题考查由递推式求数列通项、错位相减法、裂项相消法对数列求和,考查学生的运算求解能力,综合性较强,难度较大.
(2)表示出bn,然后利用分组求和得,Sn=3[(1•2+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],令x=1•2+2•21+3•22+…+n•2n-1,运用错位相减法可得x,代入Sn即可;
(3)由
解答:解:(1)∵a1=2,
∴an=a1+(a2-a1)+(a3-a2)+…+(an-an-1)
=2+3×2+3×21+3×22+…+3×2n-2
=2+3(2+21+22+…+2n-2)
=2+3×
经验证n=1也成立,∴
(2)
∴Sn=3[(1•2+2•21+3•22+…+n•2n-1)-(1+2+3+…+n)],
设x=1•2+2•21+3•22+…+n•2n-1①,则2x=1•21+2•22+3•23+…+n•2n②,
①-②得,-x=1+21+22+23+…+2n-1-n•2n
=1+
∴x=(n-1)2n+1,
∴Sn=3[(n-1)2n+1-
∴Sn=
(3)∵
∴cn=log22n-1=n-1,
=1-
点评:本题考查由递推式求数列通项、错位相减法、裂项相消法对数列求和,考查学生的运算求解能力,综合性较强,难度较大.
练习册系列答案
相关题目
设数列{an}满足a1=1,a2+a4=6,且对任意n∈N*,函数f(x)=(an-an+1+an+2)x+an+1?cosx-an+2sinx满足f′(
)=0若cn=an+
,则数列{cn}的前n项和Sn为( )
| π |
| 2 |
| 1 |
| 2an |
A、
| ||||
B、
| ||||
C、
| ||||
D、
|