题目内容
季节性服装当季节即将来临时,价格呈上升趋势,设某服装开始时定价为10元,并且每周(7天)涨价2元,5周后开始保持20元的价格平稳销售;10周后当季节即将过去时,平均每周削价2元,直到16周末,该服装已不再销售.
试建立价格P与周次t之间的函数关系式.
若此服装每件进价Q与周次t之间的关系为Q=-0.125(t-8)2+12,t∈[0,16],t∈N*,试问该服装第几周每件销售利润L最大?
【小题1】P= ![]()
【小题2】因每件销售利润=售价-进价,即L=P-Q
故有:当t∈[0,5)且t∈N*时,L=10+2t+0.125(t-8)2-12=
t2+6
即,当t=5时,Lmax=9.125
当t∈[5,10)时t∈N*时,L=0.125t2-2t+16
即t=5时,Lmax=9.125
当t∈[10,16]时,L=0.125t2-4t+36
即t=10时,Lmax=8.5
由以上得,该服装第5周每件销售利润L最大.
解析:
同答案
练习册系列答案
相关题目