题目内容

如果函数f(x)=x2-ax-3在区间(-∞,4]上单调递减,则实数a满足的条件是( )
A.a≥8
B.a≤8
C.a≥4
D.a≥-4
【答案】分析:根据函数f(x)=x2-ax-3在区间(-∞,4]上单调递减,则根据函数的图象知:对称轴必在x=4的右边,即
解答:解:∵f(x)=x2-ax-3在区间(-∞,4]上递减,对称轴为

故a≥8
故选A
点评:本题考查了二次函数的性质,属于基础题.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网