题目内容

10.已知函数$\left\{\begin{array}{l}{0,x>0}\\{-π,x=0}\\{{2}^{x},x<0}\end{array}\right.$,则f(f(f(-1)))的值等于(  )
A.π2-1B.π2+1C.D.0

分析 先求出f(-1)=${2}^{-1}=\frac{1}{2}$,从而f(f(-1))=f($\frac{1}{2}$)=0,进而f(f(f(-1)))=f(0),由此能求出结果.

解答 解:∵函数$\left\{\begin{array}{l}{0,x>0}\\{-π,x=0}\\{{2}^{x},x<0}\end{array}\right.$,
∴f(-1)=${2}^{-1}=\frac{1}{2}$,
f(f(-1))=f($\frac{1}{2}$)=0,
f(f(f(-1)))=f(0)=-π.
故选:C.

点评 本题考查函数值的求法,是基础题,解题时要认真审题,注意函数性质的合理运用.

练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网