题目内容
(文科)已知数列{an}的首项a1=1,前n项和为Sn,且an+1=2Sn+2n-1(n?N*)
(1)设bn=an+2n(n?N*),证明数列{bn}是等比数列;
(2)设 Cn=
(n∈N*),求Tn=c1+c2+…+cn.
(1)设bn=an+2n(n?N*),证明数列{bn}是等比数列;
(2)设 Cn=
| 2n |
| (1+3n-an)(1+3n+1-an+1) |
(1)证明:∵an+1=2Sn+2n+1-1(n≥1),
当n≥2时,an=2Sn-1+2n-1,两式相减得an+1=3an+2n(n≥2).
从而bn+1=an+1+2n+1=3an+2n+2n+1=3(an+2n)=3bn(n≥2).
∵S2=3S1+22-1,即a1+a2=3a1+3,∴a2=2a1+3=5,
∴b2≠0,bn≠0,
∴
=
=
=3.故
=3(n=1,2,3…)
∴数列{bn}是公比为3,首项为3的等比数列.
(2)由(1)知,bn=3•3n-1=3n,bn=an+2n得an=3n-2n,
∴cn=
=
,
则cn=
=
-
.
∴c1+c2+…+cn=
-
+
-
+…+
-
=
-
.
当n≥2时,an=2Sn-1+2n-1,两式相减得an+1=3an+2n(n≥2).
从而bn+1=an+1+2n+1=3an+2n+2n+1=3(an+2n)=3bn(n≥2).
∵S2=3S1+22-1,即a1+a2=3a1+3,∴a2=2a1+3=5,
∴b2≠0,bn≠0,
∴
| b2 |
| b1 |
| a2+4 |
| a1+2 |
| 9 |
| 3 |
| bn+1 |
| bn |
∴数列{bn}是公比为3,首项为3的等比数列.
(2)由(1)知,bn=3•3n-1=3n,bn=an+2n得an=3n-2n,
∴cn=
| 2n |
| (1+3n-an)(1+3n+1-an+1) |
| 2n |
| (1+2n)(1+2n+1) |
则cn=
| 2n |
| (1+2n)(1+2n+1) |
| 1 |
| 1+2n |
| 1 |
| 1+2n+1 |
∴c1+c2+…+cn=
| 1 |
| 1+21 |
| 1 |
| 1+22 |
| 1 |
| 1+22 |
| 1 |
| 1+23 |
| 1 |
| 1+2n |
| 1 |
| 1+2n+1 |
=
| 1 |
| 3 |
| 1 |
| 1+2n+1 |
练习册系列答案
相关题目