题目内容
已知数列{an}满足a1=
,点(2Sn+an,Sn+1)在f(x)=
x+
的图象上:
(1)求数列{an}的通项公式;
(2)若cn=(an-
)n,Tn为cn的前n项和,求Tn.
| 7 |
| 6 |
| 1 |
| 2 |
| 1 |
| 3 |
(1)求数列{an}的通项公式;
(2)若cn=(an-
| 2 |
| 3 |
(1)解∵点(2Sn+an,Sn+1)在f(x)=
x+
的图象上
∴Sn+1=
(2Sn+an)+
即Sn+1-Sn=
an+
∴an+1=
an+
∴an+1-
=
(an-
)
∴{an-
}是以a1-
=
为首项,以
为公比的等比数列
∴an-
=
•(
)n-1
∴an=
+(
)n
(2)∵cn=(an-
)n=
∴Tn=
+
+
+…+
…①
Tn=
+
+…+
.②
①-②得
Tn=
+
+…+
-
∴Tn=2-
-
| 1 |
| 2 |
| 1 |
| 3 |
∴Sn+1=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
∴an+1=
| 1 |
| 2 |
| 1 |
| 3 |
∴an+1-
| 2 |
| 3 |
| 1 |
| 2 |
| 2 |
| 3 |
∴{an-
| 2 |
| 3 |
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an-
| 2 |
| 3 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=
| 2 |
| 3 |
| 1 |
| 2 |
(2)∵cn=(an-
| 2 |
| 3 |
| n |
| 2n |
∴Tn=
| 1 |
| 2 |
| 2 |
| 22 |
| 3 |
| 23 |
| n |
| 2n |
| 1 |
| 2 |
| 1 |
| 22 |
| 2 |
| 23 |
| n |
| 2n+1 |
①-②得
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 22 |
| 1 |
| 2n |
| n |
| 2n+1 |
∴Tn=2-
| 1 |
| 2n-1 |
| n |
| 2n |
练习册系列答案
相关题目