题目内容

已知函数f(x)=ax2+bx+c(a>0且bc≠0).
(1)若|f(0)|=|f(1)|=|f(-1)|=1,试求f(x)的解析式;
(2)令g(x)=2ax+b,若g(1)=0,又f(x)的图象在x轴上截得的弦的长度为l,且0<|x1-x2|≤2,试确定c-b的符号.
(1)由已知|f(1)|=|f(-1)|,有|a+b+c|=|a-b+c|,(a+b+c)2=(a-b+c)2,可得4b(a+c)=0.
∵bc≠0,∴b≠0.∴a+c=0.
又由a>0有c<0.
∵|c|=1,于是c=-1,则a=1,|b|=1.
∴f(x)=x2±x-1.
(2)g(x)=2ax+b,由g(1)=0有2a+b=0,b<0.
设方程f(x)=0的两根为x1、x2
∴x1+x2=-
b
a
=2,x1x2=
c
a

则|x1-x2|=
(x1+x2)2-4x1x2
=
4-4
c
a

由已知0<|x1-x2|≤2,
∴0≤
c
a
<1.
又∵a>0,bc≠0,
∴c>0.
∴c-b>0.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网