题目内容

设函数f(x)=|3x-1|的定义域是[a,b],值域是[2a,2b](b>a),则a+b=______.
因为f(x)=|3x-1|的值域为[2a,2b],
所以b>a≥0,
而函数f(x)=|3x-1|在[0,+∞)上是单调递增函数,
因此应有
|3a-1|=2a
|3b-1|=2b
,解得
a=0或1
b=0或1
,∵b>a,∴
a=0
b=1
.

所以有a+b=1.
故答案为:1
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网