题目内容
已知f(x)=2cosx•sin(x+
)+
sinx•cosx-sin2x,
(1)求函数y=f(x)的单调递增区间;
(2)设△ABC的内角A满足f(A)=2,而
•
=
,求边BC的最小值.
| π |
| 6 |
| 3 |
(1)求函数y=f(x)的单调递增区间;
(2)设△ABC的内角A满足f(A)=2,而
| AB |
| AC |
| 3 |
(1)f(x)=2cosx(
sinx+
cosx)+
sinx•cosx-sin2x=2
sinx•cosx+cos2x-sin2x=
sin2x+cos2x=2sin(2x+
)(4分)
由2kπ-
≤2x+
≤2kπ+
得kπ-
≤x≤kπ+
,
故所求单调递增区间为[kπ-
,kπ+
](k∈Z).(7分)
(2)由f(A)=2sin(2A+
)=2,0<A<π得A=
,(9分)
∵
•
=
,即bccosA=
,∴bc=2,(10分)
又△ABC中,a2=b2+c2-2bccosA=b2+c2-
bc≥2bc-
bc=(2-
)bc=(2-
)×2=4-2
,
∴amin=
=
-1(14分)
| ||
| 2 |
| 1 |
| 2 |
| 3 |
| 3 |
| 3 |
| π |
| 6 |
由2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
故所求单调递增区间为[kπ-
| π |
| 3 |
| π |
| 6 |
(2)由f(A)=2sin(2A+
| π |
| 6 |
| π |
| 6 |
∵
| AB |
| AC |
| 3 |
| 3 |
又△ABC中,a2=b2+c2-2bccosA=b2+c2-
| 3 |
| 3 |
| 3 |
| 3 |
| 3 |
∴amin=
4-2
|
| 3 |
练习册系列答案
相关题目