题目内容
全集U=R,若集合A={x|3≤x<10},B={x|2<x≤7},则
(1)求A∩B,A∪B,(?UA)∩(?UB);
(2)若集合C={x|x>a},若A∩C=A,求a的取值范.
(1)求A∩B,A∪B,(?UA)∩(?UB);
(2)若集合C={x|x>a},若A∩C=A,求a的取值范.
分析:(1)根据所给的两个集合的元素,写出两个集合的交集,并集和两个集合的补集的交集,可以通过画数轴看出结果.
(2)根据两个集合之间的包含关系,写出两个集合的端点之间的关系,注意端点之处的数值是否包含.
(2)根据两个集合之间的包含关系,写出两个集合的端点之间的关系,注意端点之处的数值是否包含.
解答:解:(1)∵B={x|2<x≤7},A={x|3≤x<10},
∴A∩B={x|3≤x≤7}
A∪B={x|2<x<10}
(CUA)∩(CUB)=(-∞,3)∪[10,+∞)
(2)∵集合C={x|x>a},A⊆C,
A={x|3≤x<10},
∴a<3
a的取值范围是{a|a<3}
∴A∩B={x|3≤x≤7}
A∪B={x|2<x<10}
(CUA)∩(CUB)=(-∞,3)∪[10,+∞)
(2)∵集合C={x|x>a},A⊆C,
A={x|3≤x<10},
∴a<3
a的取值范围是{a|a<3}
点评:本题考查集合之间的运算,是一个基础题,这种题目不与其他的知识点结合时,运算起来比较简单,可以通过画数轴帮助解决.
练习册系列答案
相关题目