题目内容
已知二次函数y=f(x)在x=| t+2 |
| 2 |
| t2 |
| 4 |
(1)求y=f(x)的表达式;
(2)若任意实数x都满足f(x)•g(x)+anx+bn=xn+1(g(x)为多项式,n∈N+),试用t表示an和bn;
(3)设圆Cn的方程(x-an)2+(y-bn)2=rn2,圆Cn与Cn+1外切(n=1,2,3,…),{rn}是各项都是正数的等比数列,记Sn为前n个圆的面积之和,求rn,Sn.
分析:(1)根据条件可设二次函数的顶点式f(x)=a(x-
)2--
,由f(1)=0,可得a,从而有f(x)=x2-(t+2)x+(t+1).
(2)由f(x)=x2-(t+2)x+(t+1)=(x-1)(x-t-1),所以“f(x)•g(x)+anx+bn=xn+1”转化为:(x-1)(x-t-1)g(x)+anx+bn=xn+1.要消去g(x)将x=1,x=t+1别代入上式,得
,解方程组即可.
(3)由an+bn=1,可知圆Cn的圆心On在直线x+y=1上,可求得圆心距|OnOn+1|=
|an+1-an|=
(t+1)n+1再由圆Cn与Cn+1外切,可得rn+rn+1=
(t+1)n+1设{rn}的公比为q,有
得q=
=t+1从而求得通项及前n项和
| t+2 |
| 2 |
| t2 |
| 4 |
(2)由f(x)=x2-(t+2)x+(t+1)=(x-1)(x-t-1),所以“f(x)•g(x)+anx+bn=xn+1”转化为:(x-1)(x-t-1)g(x)+anx+bn=xn+1.要消去g(x)将x=1,x=t+1别代入上式,得
|
(3)由an+bn=1,可知圆Cn的圆心On在直线x+y=1上,可求得圆心距|OnOn+1|=
| 2 |
| 2 |
| 2 |
|
| rn+1 |
| rn |
解答:解:(1)设f(x)=a(x-
)2--
,
∵f(1)=0,
∴a(1-
)2--
=0,从而a=1,
∴f(x)=x2-(t+2)x+(t+1).
(2)f(x)=x2-(t+2)x+(t+1)=(x-1)(x-t-1)
∴(x-1)(x-t-1)g(x)+anx+bn=xn+1.
将x=1,x=t+(1分)别代入上式,得
∵t≠0,
∴an=
[(t+1)n+1-1]
bn=
[1-(t+1)n]
(3)∵an+bn=1,
∴圆Cn的圆心On在直线x+y=1上
∴|OnOn+1|=
|an+1-an|=
(t+1)n+1
又圆Cn与Cn+1外切,故rn+rn+1=
(t+1)n+1
设{rn}的公比为q,则
(2)÷(1),得q=
=t+1
于是rn=
∴Sn=π(r12+r22+…+rn2)=
=
[(t+1)2n-1]
| t+2 |
| 2 |
| t2 |
| 4 |
∵f(1)=0,
∴a(1-
| t+2 |
| 2 |
| t2 |
| 4 |
∴f(x)=x2-(t+2)x+(t+1).
(2)f(x)=x2-(t+2)x+(t+1)=(x-1)(x-t-1)
∴(x-1)(x-t-1)g(x)+anx+bn=xn+1.
将x=1,x=t+(1分)别代入上式,得
|
∵t≠0,
∴an=
| 1 |
| t |
bn=
| t+1 |
| t |
(3)∵an+bn=1,
∴圆Cn的圆心On在直线x+y=1上
∴|OnOn+1|=
| 2 |
| 2 |
又圆Cn与Cn+1外切,故rn+rn+1=
| 2 |
设{rn}的公比为q,则
|
(2)÷(1),得q=
| rn+1 |
| rn |
于是rn=
| ||
| t+2 |
| πr12(q2n-1) |
| q2-1 |
| 2π(t+1)4 |
| t(t+2)3 |
点评:本题主要考查数列与函数,方程的综合运用,主要涉及了函数的解析式,圆与圆的位置关系,数列的递推与通项和前n项和公式.
练习册系列答案
相关题目