题目内容
已知函数f(x)=ln(1+x)-p
.
(1)若函数f(x)在定义域内为减函数,求实数p的取值范围;
(2)如果数列{an}满足a1=3,an+1=[1+
]an+
,试证明:当n≥2时,4≤an<4e
.
| x |
(1)若函数f(x)在定义域内为减函数,求实数p的取值范围;
(2)如果数列{an}满足a1=3,an+1=[1+
| 1 |
| n2(n+1)2 |
| 1 |
| 4n |
| 3 |
| 4 |
(1)函数f(x)=ln(1+x)-p
的定义域为[0,+∞),
f′(x)=
-
=
.
依题意,2
-p(1+x)≤0恒成立,所以p≥(
)max,
由x≥0?1+x≥2
?
≤1,知(
)max=1,
∴p≥1,∴p的取值范围为[1,+∞).
(2)首先,由a1=3,得a2=[1+
]×3+
=4,
而当an>0时有an+1-an=
an+
>0,∴an+1>an,
所以,对n∈N*(n≥2),都有an≥4.
再由an+1=[1+
]an+
及an≥4,
又得an+1≤[1+
]an+
=[1+
+
]an,
∴lnan+1≤ln{[1+
+
]an}=ln[1+
+
]+lnan,
∴lnan+1-lnan≤ln[1+
+
].
由(1)知当p≥1时f(x)为减函数,取p=1,则f(x)=ln(1+x)-
,
当x>0时f(x)<f(0)=0,故ln(1+x)≤
(x>0),
∴lnan+1-lnan≤ln[1+
+
]<
<
+
=
-
+
,
∴lna3-lna2<
-
+
,lna4-lna3<
-
+
,….,lnan-lnan-1<
-
+
,
将这n-2个式子相加得lnan-lna2<
-
+
(1-
)<
,
∴
<e
,将a2=4代入得an<4e
,
故当n≥2时,4≤an<4e
.
| x |
f′(x)=
| 1 |
| 1+x |
| p | ||
2
|
2
| ||
2(1+x)
|
依题意,2
| x |
2
| ||
| 1+x |
由x≥0?1+x≥2
| x |
2
| ||
| 1+x |
2
| ||
| 1+x |
∴p≥1,∴p的取值范围为[1,+∞).
(2)首先,由a1=3,得a2=[1+
| 1 |
| 12×22 |
| 1 |
| 4 |
而当an>0时有an+1-an=
| 1 |
| n2(n+1)2 |
| 1 |
| 4n |
所以,对n∈N*(n≥2),都有an≥4.
再由an+1=[1+
| 1 |
| n2(n+1)2 |
| 1 |
| 4n |
又得an+1≤[1+
| 1 |
| n2(n+1)2 |
| an |
| 4n+1 |
| 1 |
| n2(n+1)2 |
| 1 |
| 4n+1 |
∴lnan+1≤ln{[1+
| 1 |
| n2(n+1)2 |
| 1 |
| 4n+1 |
| 1 |
| n2(n+1)2 |
| 1 |
| 4n+1 |
∴lnan+1-lnan≤ln[1+
| 1 |
| n2(n+1)2 |
| 1 |
| 4n+1 |
由(1)知当p≥1时f(x)为减函数,取p=1,则f(x)=ln(1+x)-
| x |
当x>0时f(x)<f(0)=0,故ln(1+x)≤
| x |
∴lnan+1-lnan≤ln[1+
| 1 |
| n2(n+1)2 |
| 1 |
| 4n+1 |
|
| 1 |
| n(n+1) |
| 1 |
| 2n+1 |
| 1 |
| n |
| 1 |
| n+1 |
| 1 |
| 2n+1 |
∴lna3-lna2<
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 23 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 24 |
| 1 |
| n-1 |
| 1 |
| n |
| 1 |
| 2n |
将这n-2个式子相加得lnan-lna2<
| 1 |
| 2 |
| 1 |
| n |
| 1 |
| 4 |
| 1 |
| 2n-2 |
| 3 |
| 4 |
∴
| an |
| a2 |
| 3 |
| 4 |
| 3 |
| 4 |
故当n≥2时,4≤an<4e
| 3 |
| 4 |
练习册系列答案
相关题目