题目内容
已知各项均为正数的数列{an},满足:a1=3,且| 2an+1-an |
| 2an-an+1 |
(1)求数列{an}的通项公式;
(2)设Sn=a12+a22+…+an2,Tn=
| 1 | ||
|
| 1 | ||
|
| 1 | ||
|
分析:(1)由题意知an+1-
=2(an-
),所以an-
=
×2n-1=
(n∈N*),由此可知数列{an}的通项公式;
(2)由题设条件知Sn+Tn=(a1-
)2+(a2-
)2+…+(an-
)2+2n=
(4n-1)+2n(n∈N*),为使Sn+Tn=
(4n-1)+2n(n∈N*)为整数,当且仅当
为整数.由此可确定最小正整数n,使Sn+Tn为整数.
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| an |
| 8 |
| 3 |
| 2n+2 |
| 3 |
(2)由题设条件知Sn+Tn=(a1-
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
| 64 |
| 27 |
| 64 |
| 27 |
| 4n-1 |
| 27 |
解答:解:(1)条件可化为an+1-
=2(an-
),
因此{an-
}为一个等比数列,其公比为2,首项为a1-
=
,
所以an-
=
×2n-1=
(n∈N*)…①
因an>0,由①式解出an=
(2n+1+
)…②
(2)由①式有Sn+Tn=(a1-
)2+(a2-
)2+…+(an-
)2+2n
=(
)2+(
)2+(
)2+…+(
)2+2n
=
(4n-1)+2n(n∈N*)
为使Sn+Tn=
(4n-1)+2n(n∈N*)为整数,
当且仅当
为整数.
当n=1,2时,显然Sn+Tn不为整数,
当n33时,4n-1=(1+3)n-1=Cn1×3+Cn2×32+33(Cn3+…+3n-3Cnn)
∴只需
=
•
为整数,
因为3n-1与3互质,
所以为9的整数倍.
当n=9时,
•
=13为整数,
故n的最小值为9.
| 1 |
| an+1 |
| 1 |
| an |
因此{an-
| 1 |
| an |
| 1 |
| a1 |
| 8 |
| 3 |
所以an-
| 1 |
| an |
| 8 |
| 3 |
| 2n+2 |
| 3 |
因an>0,由①式解出an=
| 1 |
| 3 |
| 22n+2+9 |
(2)由①式有Sn+Tn=(a1-
| 1 |
| a1 |
| 1 |
| a2 |
| 1 |
| an |
=(
| 23 |
| 3 |
| 24 |
| 3 |
| 25 |
| 3 |
| 2n+2 |
| 3 |
=
| 64 |
| 27 |
为使Sn+Tn=
| 64 |
| 27 |
当且仅当
| 4n-1 |
| 27 |
当n=1,2时,显然Sn+Tn不为整数,
当n33时,4n-1=(1+3)n-1=Cn1×3+Cn2×32+33(Cn3+…+3n-3Cnn)
∴只需
3
| ||||
| 27 |
| n |
| 9 |
| 3n-1 |
| 2 |
因为3n-1与3互质,
所以为9的整数倍.
当n=9时,
| n |
| 9 |
| 3n-1 |
| 2 |
故n的最小值为9.
点评:本题考查数列的性质和应用,解题时要认真审题,注意挖掘题设条件中的隐含条件,仔细求解.
练习册系列答案
相关题目