题目内容
设数列{an}的前n项和为Sn,a1=1,且对任意正整数n,都有点(an+1,Sn)在直线2x+y-2=0上.若数列{Sn+λn+
}为等差数列,则λ的值为( )
| λ |
| 2n |
分析:利用通项an与其前n项和之间Sn之间的关系即可得出Sn,再利用等差数列的定义即可得出λ的值.
解答:解:由题意可得:2an+1+Sn-2=0,而an+1=Sn+1-Sn,
∴2(Sn+1-Sn)+Sn-2=0,可化为2(Sn+1-2)=Sn-2,
∵a1=1,∴S1-2=-1≠0,∴
=
,
∴数列{Sn-2}是以-1为首项,
为公比的等比数列,
∴Sn-2=-(
)n-1,即Sn=2-
.
∴Sn+λn+
=2-
+λn+
=2+λn+
.
bn=2+λn+
,则b1=1+
λ,b2=
+
λ,b3=
+
λ.
∵b1,b2,b3成等差数列,∴2b2=b1+b3,即2(
+
λ)=1+
λ+
+
λ,
解得λ=2.
当λ=2时,Sn=2n+2,数列{Sn}是以4为首项,2为公差的等差数列.
故存在实数λ=2,使得数列{Sn+λn+
}成等差数列.
∴2(Sn+1-Sn)+Sn-2=0,可化为2(Sn+1-2)=Sn-2,
∵a1=1,∴S1-2=-1≠0,∴
| Sn+1-2 |
| Sn-2 |
| 1 |
| 2 |
∴数列{Sn-2}是以-1为首项,
| 1 |
| 2 |
∴Sn-2=-(
| 1 |
| 2 |
| 1 |
| 2n-1 |
∴Sn+λn+
| λ |
| 2n |
| 1 |
| 2n-1 |
| λ |
| 2n |
| λ-2 |
| 2n |
bn=2+λn+
| λ-2 |
| 2n |
| 3 |
| 2 |
| 3 |
| 2 |
| 9 |
| 4 |
| 7 |
| 4 |
| 25 |
| 8 |
∵b1,b2,b3成等差数列,∴2b2=b1+b3,即2(
| 3 |
| 2 |
| 9 |
| 4 |
| 3 |
| 2 |
| 7 |
| 4 |
| 25 |
| 8 |
解得λ=2.
当λ=2时,Sn=2n+2,数列{Sn}是以4为首项,2为公差的等差数列.
故存在实数λ=2,使得数列{Sn+λn+
| λ |
| 2n |
点评:熟练掌握等差数列的定义及关系an=
是解题的关键.
|
练习册系列答案
相关题目