题目内容

已知函数f(x)=2-
1
x
,数列{an}满足an=f(an-1)(n≥2,n∈N+).
(Ⅰ)若a1=
3
5
,数列{bn}满足bn=
1
an-1
,求证:数列{bn}是等差数列;
(Ⅱ)若a1=
3
5
,数列{an}中是否存在最大项与最小项,若存在,求出最大项与最小项;若不存在,说明理由;
(Ⅲ)若1<a1<2,试证明:1<an+1<an<2.
分析:(Ⅰ)根据题设中的函数式,求得an和an-1的递推式,进而利用bn-bn-1=1判断出数列{bn}是等差数列.
(Ⅱ)根据(Ⅰ)可求得,数列{bn}的通项公式,则bn可得,通过对函数g(x)=1+
2
2x-7
求导判断出则函数g(x)=1+
2
2x-7
在区间(-∞,
7
2
)
(
7
2
,+∞)
上为减函数.且在(-∞,
7
2
)
上递减,故当n=3时,an取最小值进而可知当x>
7
2
时,g(x)=1+
2
2x-7
>1
,且在(
7
2
,+∞)
上递减,故当n=4时,an取最大值
m-n
lnm-lnn
<2m

(Ⅲ)先看当n=1时等式成立,再看n≥2时,假设n=k时命题成立,即1<ak<2,则当n=k+1时,
1
2
1
ak
<1
,则1<ak+1<2,ak+1=2-
1
ak
∈(1,
3
2
)
故当n=k+1时也成立.进而an+1-an<0判断出an+1<an
最后综合可证明原式.
解答:解:∵f(x)=2-
1
x
,则an=2-
1
an-1
(n≥2,n?N*).
(Ⅰ)bn=
1
an-1
=
1
2-
1
an-1
-1
=
an-1
an-1-1
bn-1=
1
an-1-1

bn-bn-1=
an-1
an-1-1
-
1
an-1-1
=1 (n≥2,n∈N*)

∴数列{bn}是等差数列.

(Ⅱ)由(Ⅰ)知,数列{bn}是等差数列,首项b1=
1
a1-1
=-
5
2
,公差为1,
则其通项公式bn=-
5
2
+(n-1)•1=n-
7
2

bn=
1
an-1
an=1+
1
bn
=1+
1
n-
7
2

an=1+
2
2n-7

考查函数g(x)=1+
2
2x-7

g′(x)=-
4
(2x-7)2
<0

则函数g(x)=1+
2
2x-7
在区间(-∞,
7
2
)
(
7
2
,+∞)
上为减函数.
∴当x<
7
2
时,g(x)=1+
2
2x-7
<1

且在(-∞,
7
2
)
上递减,故当n=3时,an取最小值
m-n
m
<2(lnm-lnn)

x>
7
2
时,g(x)=1+
2
2x-7
>1

且在(
7
2
,+∞)
上递减,故当n=4时,an取最大值
m-n
lnm-lnn
<2m
.故存在.

(Ⅲ)先用数学归纳法证明1<an<2,再证明an+1<an
①当n=1时,1<a1<2成立,
②假设n=k时命题成立,即1<ak<2,
则当n=k+1时,
1
2
1
ak
<1
ak+1=2-
1
ak
∈(1,
3
2
)
,则1<ak+1<2,故当n=k+1时也成立.
综合①②有,命题对任意n?N*时成立,即1<an<2.下证an+1<an
an+1-an=2-
1
an
-an=2-(an+
1
an
)<2-2
an
1
an
=0

∴an+1<an
综上所述:1<an+1<an<2.
点评:本题主要考查了数列与不等式的综合,数学归纳法的证明方法.考查了学生综合分析问题的能力和基本的推理能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网