题目内容
已知a>b>0,m>0请将
,
,
,
按从大到小的顺序排列起来
<
<
<
<
<
<
.
| b |
| a |
| b+m |
| a+m |
| a |
| b |
| a+m |
| b+m |
| b |
| a |
| b+m |
| a+m |
| a+m |
| b+m |
| a |
| b |
| b |
| a |
| b+m |
| a+m |
| a+m |
| b+m |
| a |
| b |
分析:依题意,0<
,
<1,1<
,1<
,再利用作差法比较
与
、
与
的大小即可.
| b |
| a |
| b+m |
| a+m |
| a+m |
| b+m |
| a |
| b |
| b |
| a |
| b+m |
| a+m |
| a+m |
| b+m |
| a |
| b |
解答:解:∵a>b>0,m>0,
∴0<
,
<1,
>1,
>1,
∵
-
=
=
>0,
∴
>
,
∴0<
<
<1;
又
-
=
=
>0,
∴1<
<
,
∴
<
<
<
,
故答案为:
<
<
<
.
∴0<
| b |
| a |
| b+m |
| a+m |
| a |
| b |
| a+m |
| b+m |
∵
| b+m |
| a+m |
| b |
| a |
| a(b+m)-b(a+m) |
| a(a+m) |
| am-bm |
| a(a+m) |
∴
| b+m |
| a+m |
| b |
| a |
∴0<
| b |
| a |
| b+m |
| a+m |
又
| a |
| b |
| a+m |
| b+m |
| a(b+m)-b(a+m) |
| b(b+m) |
| am-bm |
| b(b+m) |
∴1<
| a+m |
| b+m |
| a |
| b |
∴
| b |
| a |
| b+m |
| a+m |
| a+m |
| b+m |
| a |
| b |
故答案为:
| b |
| a |
| b+m |
| a+m |
| a+m |
| b+m |
| a |
| b |
点评:本题考查不等关系与不等式,突出考查作差法的应用,也可以用特值法,属于中档题.
练习册系列答案
相关题目