题目内容
已知数列{an}满足:a1=
,a2=
,an+1=2an-an-1(n≥2,n∈N*),数列{bn}满足b1<0,3bn-bn-1=n(n≥2,n∈N*),数列{bn}的前n项和为Sn.
(Ⅰ)求证:数{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}是单调递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.
| 1 |
| 4 |
| 3 |
| 4 |
(Ⅰ)求证:数{bn-an}为等比数列;
(Ⅱ)求证:数列{bn}是单调递增数列;
(Ⅲ)若当且仅当n=3时,Sn取得最小值,求b1的取值范围.
(Ⅰ)2an=an+1+an-1(n≥2,n∈N*)∴{an}是等差数列.
又a1=
,a2=
,
∴an=
+(n-1)-
=
bn=
bn-1+
(n≥2,n∈N*),
∴bn+1-an+1=
bn+
-
=
bn-
=
(bn-
)=
(bn-an).
又∵b1-a1=b1-
≠0
∴{bn-an}是以b1-
为首项,以
为公比的等比数列.
(Ⅱ)bn-an=(b1-
)•(
)n-1an=
,bn=(b1-
)•(
)n-1+
.
当n≥2时bn-bn-1=
-
(b1-
)
n-2
又b1<0,∴bn-bn-1>0
∴{bn}是单调递增数列.
(Ⅲ)∵当且仅当n=3时,Sn取最小值.
∴
即
,
∴b1∈(-47,-11).
又a1=
| 1 |
| 4 |
| 3 |
| 4 |
∴an=
| 1 |
| 4 |
| 1 |
| 2 |
| 2n-1 |
| 4 |
bn=
| 1 |
| 3 |
| n |
| 3 |
∴bn+1-an+1=
| 1 |
| 3 |
| n+1 |
| 3 |
| 2n+1 |
| 4 |
| 1 |
| 3 |
| 2n-1 |
| 12 |
| 1 |
| 3 |
| 2n-1 |
| 4 |
| 1 |
| 3 |
又∵b1-a1=b1-
| 1 |
| 4 |
∴{bn-an}是以b1-
| 1 |
| 4 |
| 1 |
| 3 |
(Ⅱ)bn-an=(b1-
| 1 |
| 4 |
| 1 |
| 3 |
| 2n-1 |
| 4 |
| 1 |
| 4 |
| 1 |
| 3 |
| 2n-1 |
| 4 |
当n≥2时bn-bn-1=
| 1 |
| 2 |
| 2 |
| 3 |
| 1 |
| 4 |
| 1 |
| 3 |
又b1<0,∴bn-bn-1>0
∴{bn}是单调递增数列.
(Ⅲ)∵当且仅当n=3时,Sn取最小值.
∴
|
即
|
∴b1∈(-47,-11).
练习册系列答案
相关题目