题目内容
设函数f(x)=2cos2x+
sin2x.
(1)求f(x)的周期以及单调增区间;
(2)当f(x)=
(-
<x<
)时,求sin2x.
| 3 |
(1)求f(x)的周期以及单调增区间;
(2)当f(x)=
| 5 |
| 3 |
| π |
| 6 |
| π |
| 6 |
(1)f(x)=2cos2x+
sin2x=1-cos2x+
sin2x=2sin(2x+
)+1
∴函数f(x)的最小正周期T=
=π,
当2kπ-
≤2x+
≤2kπ+
,即kπ-
≤x≤kπ+
故函数的单调增区间为[kπ-
,kπ+
](k∈Z)
(2)∵f(x)=2sin(2x+
)+1=
∴sin(2x+
)=
,且-
<x<
∴cos(2x+
)>0
∴cos(2x+
)=
=
sin2x=sin(2x+
-
)=
×
-
×
=
.
| 3 |
| 3 |
| π |
| 6 |
∴函数f(x)的最小正周期T=
| 2π |
| 2 |
当2kπ-
| π |
| 2 |
| π |
| 6 |
| π |
| 2 |
| π |
| 3 |
| π |
| 6 |
故函数的单调增区间为[kπ-
| π |
| 3 |
| π |
| 6 |
(2)∵f(x)=2sin(2x+
| π |
| 6 |
| 5 |
| 3 |
∴sin(2x+
| π |
| 6 |
| 1 |
| 3 |
| π |
| 6 |
| π |
| 6 |
∴cos(2x+
| π |
| 6 |
∴cos(2x+
| π |
| 6 |
1-
|
2
| ||
| 3 |
sin2x=sin(2x+
| π |
| 6 |
| π |
| 6 |
| 1 |
| 3 |
| ||
| 2 |
2
| ||
| 3 |
| 1 |
| 2 |
| ||||
| 6 |
练习册系列答案
相关题目