题目内容
已知函数f(x)=
sin(2x-
)+2sin2(x-
)(x∈R)
(1)求函数f(x)的最小正周期;
(2)求使函数f(x)取得最大值的x集合;
(3)若θ∈(0,
),且f(θ)=
,求cos4θ的值.
| 3 |
| π |
| 6 |
| π |
| 12 |
(1)求函数f(x)的最小正周期;
(2)求使函数f(x)取得最大值的x集合;
(3)若θ∈(0,
| π |
| 2 |
| 5 |
| 3 |
分析:(1)利用二倍角的三角函数公式结合辅助角公式,整理得f(x)=2sin(2x-
)+1,结合三角函数的周期公式即可得到
f(x)的最小正周期;
(2)根据正弦函数的图象与性质,解方程2x-
=
+2kπ(k∈Z),即可得到函数f(x)取得最大值的x集合;
(3)代入计算,得sin(2θ-
)=
,结合θ∈(0,
)得2θ-
∈(-
,
),从而得到cos(2θ-
)=
.再利用配角,算出cos2θ=cos[(2θ-
)+
]=
,最后结合二倍角余弦的公式即可得到cos4θ的值.
| π |
| 3 |
f(x)的最小正周期;
(2)根据正弦函数的图象与性质,解方程2x-
| π |
| 3 |
| π |
| 2 |
(3)代入计算,得sin(2θ-
| π |
| 3 |
| 1 |
| 3 |
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
| π |
| 3 |
2
| ||
| 3 |
| π |
| 3 |
| π |
| 3 |
2
| ||||
| 6 |
解答:解:(1)∵sin2(x-
)=
[1-cos2(x-
)]=
-
cos(2x-
)
∴f(x)=
sin(2x-
)+[1-cos(2x-
)]
=2[sin(2x-
)cos
-cos(2x-
)sin
]+1
=2sin(2x-
)+1
由此可得函数f(x)的最小正周期T=
=π
(2)∵x∈R,∴当2x-
=
+2kπ(k∈Z)时,函数有最大值为3
解之得x=
+kπ(k∈Z),
得f(x)取得最大值的x集合为{x|x=
+kπ(k∈Z)}
(3)f(θ)=
即2sin(2θ-
)+1=
解之得sin(2θ-
)=
∵θ∈(0,
),得2θ-
∈(-
,
)
∴根据sin(2θ-
)=
<
,得2θ-
∈(0,
)
因此cos(2θ-
)=
=
∴cos2θ=cos[(2θ-
)+
]=
×
-
×
=
cos4θ=2cos22θ-1=2(
)2-1=
| π |
| 12 |
| 1 |
| 2 |
| π |
| 12 |
| 1 |
| 2 |
| 1 |
| 2 |
| π |
| 6 |
∴f(x)=
| 3 |
| π |
| 6 |
| π |
| 6 |
=2[sin(2x-
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
| π |
| 6 |
=2sin(2x-
| π |
| 3 |
由此可得函数f(x)的最小正周期T=
| 2π |
| 2 |
(2)∵x∈R,∴当2x-
| π |
| 3 |
| π |
| 2 |
解之得x=
| 5π |
| 12 |
得f(x)取得最大值的x集合为{x|x=
| 5π |
| 12 |
(3)f(θ)=
| 5 |
| 3 |
| π |
| 3 |
| 5 |
| 3 |
解之得sin(2θ-
| π |
| 3 |
| 1 |
| 3 |
∵θ∈(0,
| π |
| 2 |
| π |
| 3 |
| π |
| 3 |
| 2π |
| 3 |
∴根据sin(2θ-
| π |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| π |
| 3 |
| π |
| 6 |
因此cos(2θ-
| π |
| 3 |
1-(
|
2
| ||
| 3 |
∴cos2θ=cos[(2θ-
| π |
| 3 |
| π |
| 3 |
2
| ||
| 3 |
| 1 |
| 2 |
| 1 |
| 3 |
| ||
| 2 |
2
| ||||
| 6 |
cos4θ=2cos22θ-1=2(
2
| ||||
| 6 |
-7-4
| ||
| 18 |
点评:本题给出三角函数表达式,求函数的最小正周期并求函数的最值,着重考查了三角恒等变形、三角函数的图象与性质等知识点,属于中档题.
练习册系列答案
相关题目