题目内容
已知函数f(x)=(1)求证:f(x)>
;
(2)设A(x1,y1),B(x2,y2)是f(x)的图象上任意两点.求证:直线AB的斜率大于零.
证明:(1)先求f(x)的定义域.由ln(ex-
)≥0得ex-
≥1即ex≥
+1,
∴x≥ln(
+1).求得f(x)的定义域为[ln(
+1),+∞).
由于ln(ex-
)及ex都是增函数,故f(x)在定义域内是增函数.
∴f(x)≥f[ln(
+1)]=
+1=
.
∴f(x)>
.
(2)设ln(
+1)<x1<x2,
∵y=f(x)在定义域内是增函数,
∴y1<y2,故直线AB的斜率k=
>0.
练习册系列答案
相关题目
|
A、(
| ||||
B、(
| ||||
C、(
| ||||
D、[
|