题目内容
对于函数f(x),若存在x0∈R,使f(x0)=x0成立,则称x0为f(x)的不动点.如果函数f(x)=
(b,c∈N)有且只有两个不动点0,2,且f(-2)<-
.
(1)求函数f(x)的解析式;
(2)已知各项不为零的数列{an}满足4Sn•f(
)=1,求数列通项an;
(3)如果数列{an}满足an=f(an),求证:当n≥2时,恒有an<3成立.
| x2+a |
| bx-c |
| 1 |
| 2 |
(1)求函数f(x)的解析式;
(2)已知各项不为零的数列{an}满足4Sn•f(
| 1 |
| an |
(3)如果数列{an}满足an=f(an),求证:当n≥2时,恒有an<3成立.
(1)设
=x得:(1-b)x2+cx+a=0,由根与系数的关系,得:
,
解得
,代入解析式f(x)=
,由f(-2)=
<-
,
得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴c=2,b=2,于是f(x)=
,(x≠1).
(2)由题设,知4Sn•
=1,所以,2Sn=an-an2 ①;
且an≠1,以n-1代n得:2Sn-1=an-1-an-12,②;
由①-②得:2an=(an-an-1)-(an2-an-12),即(an+an-1)(an-an-1+1)=0,
∴an=-an-1或an-an-1=-1,以n=1代入①得:2a1=a1-a12,
解得a1=0(舍去)或a1=-1;由a1=-1,若an=-an-1得a2=1,这与an≠1矛盾,
∴an-an-1=-1,即{an}是以-1为首项,-1为公差的等差数列,∴an=-n;
(3)证法(一):运用反证法,假设an>3(n≥2),则由(1)知an+1=f(an)=
,
∴
=
=
•(1+
)<
(1+
)=
<1,即an+1<an(n≥2,n∈N)
∴an<an-1<…<a2,而当n=2时,a2=
=
=
<3;
这与假设矛盾,故假设不成立,∴an<3.
证法(二):由an+1=f(an)得an+1=
,
=-2(
-
)2+
≤
得an+1<0或an+1≥2,若an+1<0,则an+1<0<3,结论成立;
若an+1≥2,此时n≥2,从而an+1-an=
≤0,
即数列{an}在n≥2时单调递减,由a2=2
,可知an≤a2=2
<3,在n≥2上成立.
| x2+a |
| bx-c |
|
解得
|
| x2 | ||
(1+
|
| -2 |
| 1+c |
| 1 |
| 2 |
得c<3,又c∈N,b∈N,若c=0,b=1,则f(x)=x不止有两个不动点,∴c=2,b=2,于是f(x)=
| x2 |
| 2(x-1) |
(2)由题设,知4Sn•
(
| ||
2(
|
且an≠1,以n-1代n得:2Sn-1=an-1-an-12,②;
由①-②得:2an=(an-an-1)-(an2-an-12),即(an+an-1)(an-an-1+1)=0,
∴an=-an-1或an-an-1=-1,以n=1代入①得:2a1=a1-a12,
解得a1=0(舍去)或a1=-1;由a1=-1,若an=-an-1得a2=1,这与an≠1矛盾,
∴an-an-1=-1,即{an}是以-1为首项,-1为公差的等差数列,∴an=-n;
(3)证法(一):运用反证法,假设an>3(n≥2),则由(1)知an+1=f(an)=
| ||
| 2an-2 |
∴
| an+1 |
| an |
| an |
| 2(an-1) |
| 1 |
| 2 |
| 1 |
| an-1 |
| 1 |
| 2 |
| 1 |
| 2 |
| 3 |
| 4 |
∴an<an-1<…<a2,而当n=2时,a2=
| ||
| 2a1-2 |
| 16 |
| 8-2 |
| 8 |
| 3 |
|
这与假设矛盾,故假设不成立,∴an<3.
证法(二):由an+1=f(an)得an+1=
| ||
| 2an-2 |
| 1 |
| an+1 |
| 1 |
| an |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
得an+1<0或an+1≥2,若an+1<0,则an+1<0<3,结论成立;
若an+1≥2,此时n≥2,从而an+1-an=
| -an(an-2) |
| 2(an-1) |
即数列{an}在n≥2时单调递减,由a2=2
| 2 |
| 3 |
| 2 |
| 3 |
练习册系列答案
相关题目