题目内容
(文)已知数列{an}的前n项和为Sn,a1=
且Sn=Sn-1+an-1+
,数列{bn}满足b1=-
且3bn-bn-1=n(n≥2且n∈N*).
(1)求{an}的通项公式;
(2)求证:数列{bn-an}为等比数列;
(3)求{bn}前n项和的最小值.
| 1 |
| 4 |
| 1 |
| 2 |
| 119 |
| 4 |
(1)求{an}的通项公式;
(2)求证:数列{bn-an}为等比数列;
(3)求{bn}前n项和的最小值.
(1)由Sn=Sn-1+an-1+
,得Sn-Sn-1=an-1+
,2an=2a n-1+1,an-a n-1+
…2分
∴an=a1+(n-1)d=
n-
(2)证明:∵3bn-bn-1=n,∴bn=
bn-1+
n,
∴bn-an=
bn-1+
n-
n+
=
bn-1-
n+
=
(bn-1-
n+
);
bn-1-an-1=bn-1-
(n-1)+
=bn-1-
n+
;
∴由上面两式得
=
,又b1-a1=-
-
=-30
∴数列{bn-an}是以-30为首项,
为公比的等比数列.
(3)由(2)得bn-an=-30×(
)n-1,
∴bn=an-30×(
)n-1=
n-
-30×(
)n-1,
bn-bn-1=
n-
-30×(
)n-1-
(n-1)+
+30×(
)n-2
=
+ 30×(
)n-2(1-
)
=
+ 20×(
)n-2>0,∴{bn}是递增数列
当n=1时,b1=-
<0;当n=2时,b2=
-10<0;
当n=3时,b3=
-
<0;当n=4时,b4=
-
>0,
所以,从第4项起的各项均大于0,故前3项之和最小.
且S3=
(1+3+5)-30-10-
=-41
.
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=a1+(n-1)d=
| 1 |
| 2 |
| 1 |
| 4 |
(2)证明:∵3bn-bn-1=n,∴bn=
| 1 |
| 3 |
| 1 |
| 3 |
∴bn-an=
| 1 |
| 3 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 6 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 3 |
| 4 |
bn-1-an-1=bn-1-
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 2 |
| 3 |
| 4 |
∴由上面两式得
| bn-an |
| bn-1-an-1 |
| 1 |
| 3 |
| 119 |
| 4 |
| 1 |
| 4 |
∴数列{bn-an}是以-30为首项,
| 1 |
| 3 |
(3)由(2)得bn-an=-30×(
| 1 |
| 3 |
∴bn=an-30×(
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
bn-bn-1=
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
| 1 |
| 2 |
| 1 |
| 4 |
| 1 |
| 3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 3 |
=
| 1 |
| 2 |
| 1 |
| 3 |
当n=1时,b1=-
| 119 |
| 4 |
| 3 |
| 4 |
当n=3时,b3=
| 5 |
| 4 |
| 10 |
| 3 |
| 7 |
| 4 |
| 10 |
| 9 |
所以,从第4项起的各项均大于0,故前3项之和最小.
且S3=
| 1 |
| 4 |
| 10 |
| 3 |
| 1 |
| 12 |
练习册系列答案
相关题目