题目内容
已知函数f(x)=
sin2x+2cos2x+3
(1)当x∈(0,
)时,求函数f(x)的值域;
(2)若f(x)=
,且x∈(
,
),求cos(2x-
)的值.
| 3 |
(1)当x∈(0,
| π |
| 2 |
(2)若f(x)=
| 28 |
| 5 |
| π |
| 6 |
| 5π |
| 12 |
| π |
| 12 |
(1)由已知f(x)=
sin2x+2cos2x+3=
sin2x+cos2x+4=2sin(2x+
)+4.(3分)
当x∈(0,
)时,2x+
∈(
,
),sin(2x+
)∈(-
,1],(5分)
故函数,f(x)的值域是(3,6](7分)
(2)由f(x)=
,得2sin(2x+
)+4=
,即sin(2x+
)=
.
因为x∈(
,
),所以cos(2x+
)=-
,(10分)
故cos(2x-
)=cos[(2x+
)-
]=cos(2x+
)•
+sin(2x+
)•
=
.
| 3 |
| 3 |
| π |
| 6 |
当x∈(0,
| π |
| 2 |
| π |
| 6 |
| π |
| 6 |
| 7π |
| 6 |
| π |
| 6 |
| 1 |
| 2 |
故函数,f(x)的值域是(3,6](7分)
(2)由f(x)=
| 28 |
| 5 |
| π |
| 6 |
| 28 |
| 5 |
| π |
| 6 |
| 4 |
| 5 |
因为x∈(
| π |
| 6 |
| 5π |
| 12 |
| π |
| 6 |
| 3 |
| 5 |
故cos(2x-
| π |
| 12 |
| π |
| 6 |
| π |
| 4 |
| π |
| 6 |
| ||
| 2 |
| π |
| 6 |
| ||
| 2 |
| ||
| 10 |
练习册系列答案
相关题目