题目内容

定义在[-1,1]上的函数y=f(x)是减函数,且是奇函数,若f(a2-a-1)+f(4a-5)>0,求实数a的取值范围.

解:f(a2-a-1)+f(4a-5)>0?f(a2-a-1)>-f(4a-5),
因为函数y=f(x)是奇函数,所以上式变为f(a2-a-1)>f(-4a+5),
又因为定义在[-1,1]上的函数y=f(x)是减函数,所以
解得:
分析:将f(a2-a-1)+f(4a-5)>0变为f(a2-a-1)>-f(4a-5),
利用奇函数,变为f(a2-a-1)>f(-4a+5),再由单调性转化为直接关于a的不等式求解即可.
点评:本题考查函数奇偶性和单调性的应用,考查运用所学知识解决问题的能力.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网