题目内容
已知数列{an}的前n项和为Sn,若a1=
且an+2Sn•Sn-1=0(n≥2).
(Ⅰ)求证{
}是等差数列,并求出an的表达式;
(Ⅱ) 若bn=2(1-n)an(n≥2),求证b22+b32+…+bn2<1.
| 1 |
| 2 |
(Ⅰ)求证{
| 1 |
| Sn |
(Ⅱ) 若bn=2(1-n)an(n≥2),求证b22+b32+…+bn2<1.
(I)证明:当n≥2时,an=Sn-Sn-1
又an+2SnSn-1=0
∴Sn-Sn-1+2SnSn-1=0(n≥2),
若Sn=0,则an=0,
∴a1=0与a1=
矛盾
∴Sn≠0,Sn-1≠0.
∴
-
+2=0即
-
=2,
又
-
=2.
∴{
}是首项为2,公差为2的等差数列
由(I)知数列{
}是等差数列.
∴
=2+(n-1)•2=2n即Sn=
∴当n≥2时,an=Sn-Sn-1=
-
=-
,
又当n=1时,S1=a1=
,
∴an=
,
(Ⅱ)证明:由(I)知bn=2(1-n)•
=
(n≥2)
∴b22+b32+…+bn2=
+
+…+
<
+
+…+
=(1-
)+(
-
)+…+(
-
)
=1-
<1
又an+2SnSn-1=0
∴Sn-Sn-1+2SnSn-1=0(n≥2),
若Sn=0,则an=0,
∴a1=0与a1=
| 1 |
| 2 |
∴Sn≠0,Sn-1≠0.
∴
| 1 |
| Sn-1 |
| 1 |
| Sn |
| 1 |
| Sn |
| 1 |
| Sn-1 |
又
| 1 |
| S2 |
| 1 |
| S1 |
∴{
| 1 |
| Sn |
由(I)知数列{
| 1 |
| Sn |
∴
| 1 |
| Sn |
| 1 |
| 2n |
∴当n≥2时,an=Sn-Sn-1=
| 1 |
| 2n |
| 1 |
| 2(n-1) |
| 1 |
| 2n(n-1) |
又当n=1时,S1=a1=
| 1 |
| 2 |
∴an=
|
(Ⅱ)证明:由(I)知bn=2(1-n)•
| 1 |
| 2n(1-n) |
| 1 |
| n |
∴b22+b32+…+bn2=
| 1 |
| 22 |
| 1 |
| 32 |
| 1 |
| n2 |
| 1 |
| 1×2 |
| 1 |
| 2×3 |
| 1 |
| (n-1)n |
=(1-
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n-1 |
| 1 |
| n |
=1-
| 1 |
| n |
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |