题目内容
[x]表示不超过x的最大整数,正项数列{an}满足a1=1,
=1.
(1)求数列{an}的通项公式an;
(2)m∈N*,求证:
+
+…+
>
;
(3)求证:
+
+…+
>
[log2n ](n>2).
| an2an-12 |
| an-12-an2 |
(1)求数列{an}的通项公式an;
(2)m∈N*,求证:
| 1 |
| 2m+1 |
| 1 |
| 2m+2 |
| 1 |
| 2m+1 |
| 1 |
| 2 |
(3)求证:
| a | 2 2 |
| a | 2 3 |
| a | 2 n |
| 1 |
| 2 |
分析:(1)根据
=1,取其倒数,即可求得数列{an}的通项公式an;
(2)
+
+…+
>
+
+…+
=
×2m>
(3)证明:
+
+…+
=
+
+…+
,设n-1=1+2+…+2m+k,其中k,m∈N且0≤k<2m+1
则
+
+…+
>
(m+1),又2m+1≤n=2m+1+k<2m+2从而m+1≤log2n<m+2,故可得证.
| an2an-12 |
| an-12-an2 |
(2)
| 1 |
| 2m+1 |
| 1 |
| 2m+2 |
| 1 |
| 2m+1 |
| 1 |
| 2m+1 |
| 1 |
| 2m+1 |
| 1 |
| 2m+1 |
| 1 |
| 2m+1 |
| 1 |
| 2 |
(3)证明:
| a | 2 2 |
| a | 2 3 |
| a | 2 n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
则
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
解答:解:(1)∵
=1
∴
-
=1
∵
=1
∴
=n
∴an=
;
(2)证明:
+
+…+
>
+
+…+
=
×2m>
(3)证明:
+
+…+
=
+
+…+
=
,
+
>
+
=
,…,
+
+…+
>
+
+…+
=
设n-1=1+2+…+2m+k,其中k,m∈N且0≤k<2m+1
则
+
+…+
>
(m+1)
又2m+1≤n=2m+1+k<2m+2
从而m+1≤log2n<m+2
∴[log2n]=m+1
所以,
+
+…+
>
[log2n]
∴
+
+…+
>
[log2n ](n>2).
| an2an-12 |
| an-12-an2 |
∴
| 1 | ||
|
| 1 | ||
|
∵
| 1 | ||
|
∴
| 1 | ||
|
∴an=
| 1 | ||
|
(2)证明:
| 1 |
| 2m+1 |
| 1 |
| 2m+2 |
| 1 |
| 2m+1 |
| 1 |
| 2m+1 |
| 1 |
| 2m+1 |
| 1 |
| 2m+1 |
| 1 |
| 2m+1 |
| 1 |
| 2 |
(3)证明:
| a | 2 2 |
| a | 2 3 |
| a | 2 n |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| 4 |
| 1 |
| 22 |
| 1 |
| 22 |
| 1 |
| 2 |
| 1 |
| 9 |
| 1 |
| 10 |
| 1 |
| 16 |
| 1 |
| 24 |
| 1 |
| 24 |
| 1 |
| 24 |
| 1 |
| 2 |
设n-1=1+2+…+2m+k,其中k,m∈N且0≤k<2m+1
则
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
又2m+1≤n=2m+1+k<2m+2
从而m+1≤log2n<m+2
∴[log2n]=m+1
所以,
| 1 |
| 2 |
| 1 |
| 3 |
| 1 |
| n |
| 1 |
| 2 |
∴
| a | 2 2 |
| a | 2 3 |
| a | 2 n |
| 1 |
| 2 |
点评:本题以数列的递推式为载体,考查数列的通项,考查不等式的证明,同时考查新定义的理解,属于中档题.
练习册系列答案
相关题目