题目内容
设f(x)是定义在R上的函数,对任意x,y∈R,恒有f(x+y)=f(x)•f(y),当x>0时,有0<f(x)<1.
(1) 求证:f(0)=1,且当x<0时,f(x)>1;
(2) 证明:f(x)在R上单调递减.
(1) 求证:f(0)=1,且当x<0时,f(x)>1;
(2) 证明:f(x)在R上单调递减.
证明:(1)对任意x,y∈R,恒有f(x+y)=f(x)•f(y),
令x=1,y=0 可得 f(0+1)=f(0).f(1)
因为x>0时,有0<f(x)<1,所以f(1)>0
所以 f(0)=1
当x<0时,-x>0,根据已知条件可得1>f(-x)>0,而f(0)=f(x-x)=f(x)f(-x)=1
f(x)=
>1
(2)设x1<x2则x1-x2<0
根据(1)可知 f(x1-x2)>1
因为f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2)
所以函数是单调递减
令x=1,y=0 可得 f(0+1)=f(0).f(1)
因为x>0时,有0<f(x)<1,所以f(1)>0
所以 f(0)=1
当x<0时,-x>0,根据已知条件可得1>f(-x)>0,而f(0)=f(x-x)=f(x)f(-x)=1
f(x)=
| 1 |
| f(-x) |
(2)设x1<x2则x1-x2<0
根据(1)可知 f(x1-x2)>1
因为f(x1)=f[(x1-x2)+x2]=f(x1-x2)•f(x2)>f(x2)
所以函数是单调递减
练习册系列答案
相关题目
设f(x)是定义在R上的奇函数,且对任意实数x,恒有f(x+2)=-f(x).当x∈[0,2]时,f(x)=2x-x2+a(a是常数).则x∈[2,4]时的解析式为( )
| A、f(x)=-x2+6x-8 | B、f(x)=x2-10x+24 | C、f(x)=x2-6x+8 | D、f(x)=x2-6x+8+a |