题目内容

已知函数f(x)=(m-2)x2+(m2-4)x+m是偶函数,g(x)=-x3+2x2+mx在(-∞,+∞)内单调递减,则实数m=(  )
A.2B.-2C.±2D.0
∵f(x)=(m-2)x2+(m2-4)x+m是偶函数,
∴f(-x)=f(x),
∴m2-4=0;①
又g(x)=-x3+2x2+mx在(-∞,+∞)内单调递减,
∴g′(x)=-3x2+4x+m≤0恒成立,
∴△=16+12m≤0,m≤-
4
3
.②
由①②可得m=-2.
故选B.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网