题目内容
在直角三角形ABC中,∠C=
,AC=3取点D,E,使
=2
,
=3
那么
•
+
•
=( )
| π |
| 2 |
| BD |
| DA |
| AB |
| BE |
| CD |
| CA |
| CE |
| CA |
分析:由向量的线性运算法则,算出
=
+
且
=-
+
,从而算出
•
+
•
=
•(
+
),再将∠C=
和|
|=3代入进行计算,可得答案.
| CD |
| 2 |
| 3 |
| CA |
| 1 |
| 3 |
| CB |
| CE |
| 1 |
| 3 |
| CA |
| 4 |
| 3 |
| CB |
| CD |
| CA |
| CE |
| CA |
| CA |
| 1 |
| 3 |
| CA |
| 5 |
| 3 |
| CB |
| π |
| 2 |
| AC |
解答:解:∵
=2
,∴
-
=2(
-
),化简得
=
+
.
同理可得
=-
+
,
∵∠C=
,可得
•
=0,
∴
•
+
•
=
•(
+
)=
•[(
+
)+(-
+
)]
=
•(
+
)=
2+
•
=
|
|2=3.
故答案为:A
| BD |
| DA |
| CD |
| CB |
| CA |
| CD |
| CD |
| 2 |
| 3 |
| CA |
| 1 |
| 3 |
| CB |
同理可得
| CE |
| 1 |
| 3 |
| CA |
| 4 |
| 3 |
| CB |
∵∠C=
| π |
| 2 |
| CA |
| CB |
∴
| CD |
| CA |
| CE |
| CA |
| CA |
| CD |
| CE |
| CA |
| 2 |
| 3 |
| CA |
| 1 |
| 3 |
| CB |
| 1 |
| 3 |
| CA |
| 4 |
| 3 |
| CB |
=
| CA |
| 1 |
| 3 |
| CA |
| 5 |
| 3 |
| CB |
| 1 |
| 3 |
| CA |
| 5 |
| 3 |
| CA |
| CB |
| 1 |
| 3 |
| CA |
故答案为:A
点评:本题给出直角三角形ABC斜边AB上满足条件的两点D、E,求向量的数量积.着重考查了向量的线性运算法则、平面向量数量积公式及其运算性质等知识,属于中档题.
练习册系列答案
相关题目