题目内容
已知数列{an}满足a1=1,且an=2an-1+2n.(n≥2且n∈N*).
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项之和Sn,求Sn.
(1)求数列{an}的通项公式;
(2)设数列{an}的前n项之和Sn,求Sn.
分析:(1)由已知可知,
=
+1,结合等差数列的通项公式可求
,进而可求an
(2)由题意可得,Sn=
•21+
•22+
•23+…+(n-
)•2n,利用错位相减法可求和
| an |
| 2n |
| an-1 |
| 2n-1 |
| an |
| 2n |
(2)由题意可得,Sn=
| 1 |
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
解答:解:(1)∵an=2an-1+2n(n≥2,且n∈N*),
∴
=
+1,
即
-
=1(n≥2,且n∈N*),
所以,数列{
}是等差数列,公差d=1,首项
,
于是
=
+(n-1)d=
+(n-1)•1=n-
,
∴an=(n-
)•2n.
(2)∵Sn=
•21+
•22+
•23+…+(n-
)•2n①
∴2Sn=
•22+
•23+
•24+…+(n-
)•2n+1②
-Sn=1+22+23+…+2n-(n-
)•2n+1
=2+22+23+…+2n-(n-
)•2n+1-1
=2n+1-2-(n-
)•2n+1-1
=(3-2n)•2n-3
∴Sn=(2n-3)•2n+3
∴
| an |
| 2n |
| an-1 |
| 2n-1 |
即
| an |
| 2n |
| an-1 |
| 2n-1 |
所以,数列{
| an |
| 2n |
| 1 |
| 2 |
于是
| an |
| 2n |
| 1 |
| 2 |
| 1 |
| 2 |
| 1 |
| 2 |
∴an=(n-
| 1 |
| 2 |
(2)∵Sn=
| 1 |
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
∴2Sn=
| 1 |
| 2 |
| 3 |
| 2 |
| 5 |
| 2 |
| 1 |
| 2 |
-Sn=1+22+23+…+2n-(n-
| 1 |
| 2 |
=2+22+23+…+2n-(n-
| 1 |
| 2 |
=2n+1-2-(n-
| 1 |
| 2 |
=(3-2n)•2n-3
∴Sn=(2n-3)•2n+3
点评:本题主要考查了利用数列的递推公式构造等差数列求解数列的通项公式,数列的错位相减求解数列的和方法的应用,属于数列知识的综合应用.
练习册系列答案
相关题目