题目内容
(2011•东城区模拟)已知函数f(x)=2cos2x+2
sinxcosx+a,且f(
)=4.
(Ⅰ)求a的值;
(Ⅱ)当-
≤x≤
时,求函数f(x)的值域.
| 3 |
| π |
| 6 |
(Ⅰ)求a的值;
(Ⅱ)当-
| π |
| 4 |
| π |
| 3 |
分析:(Ⅰ)根据f(
)=4,利用函数f(x)=2cos2x+2
sinxcosx+a,可求a的值;
(Ⅱ)先利用辅助角公式将函数化简,可得f(x)=2sin(2x+
)+2,根据-
≤x≤
,可得-
≤2x+
≤
,从而可求函数f(x)的值域
| π |
| 6 |
| 3 |
(Ⅱ)先利用辅助角公式将函数化简,可得f(x)=2sin(2x+
| π |
| 6 |
| π |
| 4 |
| π |
| 3 |
| π |
| 3 |
| π |
| 3 |
| 5π |
| 6 |
解答:解:(Ⅰ)由f(
)=4,可得2×(
)2+2
×
×
+a=4,---------(2分)
∴a=1.----------(4分)
(Ⅱ)f(x)=2cos2x+2
sinxcosx+1=cos2x+
sin2x+2=2sin(2x+
)+2.--------------(8分)
∵-
≤x≤
,∴-
≤2x+
≤
,
∴-
≤sin(2x+
)≤1,-------------(11分)
∴2-
≤f(x)≤4,
所以,函数f(x)的值域为[2-
,4].---------(13分)
| π |
| 6 |
| ||
| 2 |
| 3 |
| 1 |
| 2 |
| ||
| 2 |
∴a=1.----------(4分)
(Ⅱ)f(x)=2cos2x+2
| 3 |
| 3 |
| π |
| 6 |
∵-
| π |
| 4 |
| π |
| 3 |
| π |
| 3 |
| π |
| 6 |
| 5π |
| 6 |
∴-
| ||
| 2 |
| π |
| 6 |
∴2-
| 3 |
所以,函数f(x)的值域为[2-
| 3 |
点评:本题以三角函数为载体,考查三角恒等变换,考查三角函数的值域,解题的关键是将函数化简,从而利用三角函数的图象求值域.
练习册系列答案
相关题目