题目内容

命题p:方程x2+mx+1=0有两个不相等的实数根,命题q:方程4x2+4(m+2)x+1=0没有实数根.若“p或q”为假命题,则实数m的取值范围为
 
分析:求出命题p,q成立的等价条件,然后利用“p或q”为假命题,即可求出实数m的取值范围.
解答:解:若方程x2+mx+1=0有两个不相等的实数根,
则判别式△=m2-4>0,
解得m>2或m<-2,即p:m>2或m<-2,¬p:-2≤m≤2.
若方程4x2+4(m+2)x+1=0没有实数根.
判别式△=16(m+2)2-4×4<0,
即(m+2)2<1,
∴-1<m+2<1,
解得-3<m<-1,
即q:-3<m<-1,¬q:x≤-3或x≥-1.
若“p或q”为假命题,
则p,q都为假命题,
-2≤m≤2
m≤-3或m≥-1

解得-1≤m≤2,
即实数m的取值范围为[-1,2].
故答案为:[-1,2].
点评:本题主要考查复合命题的应用,根据条件求出命题p,q的等价条件是解决本题的关键.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网