题目内容
5.集合M={(x,y)|2x-y=1},N={(x,y)|3x+y=0},则M∩N={($\frac{1}{5}$,-$\frac{3}{5}$)}.分析 联立M与N中两方程组成方程组,求出方程组的解即可确定出两集合的交集.
解答 解:联立M与N中两方程得:$\left\{\begin{array}{l}{2x-y=1}\\{3x+y=0}\end{array}\right.$,
解得:$\left\{\begin{array}{l}{x=\frac{1}{5}}\\{y=-\frac{3}{5}}\end{array}\right.$,
则M∩N={($\frac{1}{5}$,-$\frac{3}{5}$)}.
故答案为:{($\frac{1}{5}$,-$\frac{3}{5}$)}
点评 此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.
练习册系列答案
相关题目
16.命题“对?∈R,x2-3x+5≤0”的否定是( )
| A. | ?x0∈R,x02-3x0+5≤0 | B. | ?x0∈R,x02-3x0+5>0 | ||
| C. | ?x∈R,x2-3x+5≤0 | D. | ?x0∈R,x02-3x0+5>0 |
20.设D为△ABC所在平面内一点,$\overrightarrow{AD}=2\overrightarrow{CD}$,则( )
| A. | $\overrightarrow{BD}=-\overrightarrow{BA}+2\overrightarrow{BC}$ | B. | $\overrightarrow{BD}=2\overrightarrow{BA}-\overrightarrow{BC}$ | C. | $\overrightarrow{BD}=\overrightarrow{BA}+2\overrightarrow{BC}$ | D. | $\overrightarrow{BD}=\frac{1}{3}\overrightarrow{BA}+\frac{2}{3}\overrightarrow{BC}$ |