题目内容
已知等差数列{an}和{bn}的前n项和分别为An和Bn,且
=
,则使得
为整数的正整数n的个数是( )
| An |
| Bn |
| 7n+41 |
| n+3 |
| an |
| bn |
分析:先将通项之比转化为前n项和之比,进而再用验证法得解.
解答:解:
=
=
=
=
=
=7+
验证知,当n=1,4,9时
为整数的正整数
故选:B
| an |
| bn |
| 2an |
| 2bn |
| ||
|
| A2n-1 |
| B2n-1 |
| 14n+34 |
| 2n+2 |
| 7n+17 |
| n+1 |
| 10 |
| n+1 |
验证知,当n=1,4,9时
| an |
| bn |
故选:B
点评:本题主要考查等差数列的通项公式和前n项和公式及性质的应用,属于中档题.
练习册系列答案
相关题目