ÌâÄ¿ÄÚÈÝ
ÒÑÖªÆ½ÃæÄÚÁ½¶¨µãF1(0£¬-
)¡¢F2(0£¬
)£¬¶¯µãPÂú×ãÌõ¼þ£º|
|-|
|=4£¬ÉèµãPµÄ¹ì¼£ÊÇÇúÏßE£¬OÎª×ø±êԵ㣮
£¨I£©ÇóÇúÏßEµÄ·½³Ì£»
£¨II£©ÈôÖ±Ïßy=k£¨x+1£©ÓëÇúÏßEÏཻÓÚÁ½²»Í¬µãQ¡¢R£¬Çó
•
µÄȡֵ·¶Î§£»
£¨III£©£¨ÎÄ¿Æ×ö£©ÉèA¡¢BÁ½µã·Ö±ðÔÚÖ±Ïßy=¡À2xÉÏ£¬Èô
=¦Ë
(¦Ë¡Ê[
£¬3])£¬¼ÇxA¡¢xB·Ö±ðΪA¡¢BÁ½µãµÄºá×ø±ê£¬Çó|xA•xB|µÄ×îСֵ£®
£¨Àí¿Æ×ö£©ÉèA¡¢BÁ½µã·Ö±ðÔÚÖ±Ïßy=¡À2xÉÏ£¬Èô
=¦Ë
(¦Ë¡Ê[
£¬3])£¬Çó¡÷AOBÃæ»ýµÄ×î´óÖµ£®
| 5 |
| 5 |
| PF1 |
| PF2 |
£¨I£©ÇóÇúÏßEµÄ·½³Ì£»
£¨II£©ÈôÖ±Ïßy=k£¨x+1£©ÓëÇúÏßEÏཻÓÚÁ½²»Í¬µãQ¡¢R£¬Çó
| OQ |
| OR |
£¨III£©£¨ÎÄ¿Æ×ö£©ÉèA¡¢BÁ½µã·Ö±ðÔÚÖ±Ïßy=¡À2xÉÏ£¬Èô
| AP |
| PB |
| 1 |
| 2 |
£¨Àí¿Æ×ö£©ÉèA¡¢BÁ½µã·Ö±ðÔÚÖ±Ïßy=¡À2xÉÏ£¬Èô
| AP |
| PB |
| 1 |
| 2 |
·ÖÎö£º£¨I£©ÓÉÌâÒ⣬¿ÉÖª¶¯µãPµÄ¹ì¼£Êǽ¹µãÔÚyÖáÉϵÄË«ÇúÏßµÄÉϰëÖ§£¬ÆäÖÐc=
£¬2a=4£¬ÓÉ´ËÄÜÇó³öÇúÏßEµÄ·½³Ì£®
£¨II£©ÉèQ£¨x1£¬y1£©£¬R£¨x2£¬y2£©£¬£¨y1£¬y2£¾0£©£¬ÓÉ
£¬µÃ(1-
)y2+
y-8=0£¬µ±1-
=0£¬²»·ûºÏÌâÒ⣬¹Ê1-
¡Ù0£®ÓÉ´ËÈëÊÖÄܹ»Çó³öÇó
•
µÄȡֵ·¶Î§£®
£¨III£©£¨ÎÄ¿Æ×ö£©ÓÉÇúÏßEµÄ·½³ÌÊÇ
-x2=1(y¡Ý2)£¬ÖªË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®ÓÉ
=¦Ë
£¬ÇҦˣ¾0£¬ÖªµãA£¬B¾ùÔÚxÖáÉÏ·½£¬ÉèA£¨xA£¬2xA£©£¬B£¨xB£¬-2xB£©£¬ÓÉ
=¦Ë
£¬µÃPµãµÄ×ø±êΪ£¨
£¬
£©£¬½«Pµã×ø±ê´úÈë
-x2=1ÖУ¬µÃxA•xB=
=-
(¦Ë+
+2)£®ÓÉ´ËÄÜÇó³ö|xA•xB|µÄ×îСֵ£®
£¨Àí¿Æ×ö£©£©ÓÉÇúÏßEµÄ·½³ÌÊÇ
-x2=1(y¡Ý2)£¬ÖªË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®ÓÉ
=¦Ë
£¬ÇҦˣ¾0£¬ÖªµãA£¬B¾ùÔÚxÖáÉÏ·½£¬ÉèA£¨m£¬2m£©£¬B£¨-n£¬2n£©£¬m£¾0£®n£¾0£®ÓÉ
=¦Ë
£¬µÃµãPµÄ×ø±êΪ£¨
£¬
£©£®½«PµÄ´Ó±ê´úÈë
-x2=1ÖУ¬µÃmn=
£®Éè¡ÏAOB=2¦È£¬ÓÉS¡÷AOB=
|OA|•|OB|•sin2¦È£¬ÓÉ´ËÄÜÇó³ö¡÷ABCÃæ»ýµÄ×î´óÖµ£®
| 5 |
£¨II£©ÉèQ£¨x1£¬y1£©£¬R£¨x2£¬y2£©£¬£¨y1£¬y2£¾0£©£¬ÓÉ
|
| 4 |
| k2 |
| 8 |
| k |
| 4 |
| k2 |
| 4 |
| k2 |
| OQ |
| OR |
£¨III£©£¨ÎÄ¿Æ×ö£©ÓÉÇúÏßEµÄ·½³ÌÊÇ
| y2 |
| 4 |
| AP |
| PB |
| AP |
| PB |
| xA+¦Ëxb |
| 1+¦Ë |
| 2(xA-¦ËxB) |
| 1+¦Ë |
| y2 |
| 4 |
| (1+¦Ë)2 |
| -4¦Ë |
| 1 |
| 4 |
| 1 |
| ¦Ë |
£¨Àí¿Æ×ö£©£©ÓÉÇúÏßEµÄ·½³ÌÊÇ
| y2 |
| 4 |
| AP |
| PB |
| AP |
| PB |
| m-¦Ën |
| 1+¦Ë |
| 2(m+¦Ën) |
| 1+¦Ë |
| y2 |
| 4 |
| (1+¦Ë)2 |
| 4¦Ë |
| 1 |
| 2 |
½â´ð£º½â£º£¨I£©ÓÉÌâÒ⣬¿ÉÖª¶¯µãPµÄ¹ì¼£Êǽ¹µãÔÚyÖáÉϵÄË«ÇúÏßµÄÉϰëÖ§£¬
ÆäÖÐc=
£¬2a=4£¬
¡àb=1£¬
¡àÇúÏßEµÄ·½³ÌÊÇ
-x2=1(y¡Ý2)£®
£¨II£©ÉèQ£¨x1£¬y1£©£¬R£¨x2£¬y2£©£¬£¨y1£¬y2£¾0£©£¬
ÓÉ
£¬µÃ(1-
)y2+
y-8=0£¬
µ±1-
=0£¬¼´k=¡À2ʱ£¬ÏÔÈ»²»·ûºÏÌâÒ⣬
¡à1-
¡Ù0£®
¡à
£¬
½âµÃ
£¼k£¼2£®
¡ßx1•x2=
-
+1=1£¬
¡à
•
=x1x2+y1y2
=1+
=1-
=-7+
£®
¡ß
£¼k£¼2£¬
¡à0£¼4-k2£¼2£¬
¡à
£¾
£¬
¡à
•
¡Ê(9£¬+¡Þ)£®
£¨III£©£¨ÎÄ¿Æ×ö£©¡ßÇúÏßEµÄ·½³ÌÊÇ
-x2=1(y¡Ý2)£¬
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®
¡ß
=¦Ë
£¬ÇҦˣ¾0£¬
¡àµãP±ØÄÚ·ÖÏß¶ÎAB£¬
¹ÊµãA£¬B¾ùÔÚxÖáÉÏ·½£¬
²»·ÁÉèxA£¾0£¬xB£¼0£¬
¼´A£¨xA£¬2xA£©£¬B£¨xB£¬-2xB£©£¬
ÓÉ
=¦Ë
£¬µÃPµãµÄ×ø±êΪ£¨
£¬
£©£¬
½«Pµã×ø±ê´úÈë
-x2=1ÖУ¬
»¯¼ò£¬µÃxA•xB=
=-
(¦Ë+
+2)£®
¡à|xA•xB|=
(¦Ë+
+2)£¬¦Ë¡Ê[
£¬2]
¡ß¦Ë+
¡Ý2£¬µ±ÇÒ½öµ±¦Ë=1ʱ£¬µÈºÅ³ÉÁ¢£®
¡à|xA•xB|min=1£®
£¨Àí¿Æ×ö£©£©¡ßÇúÏßEµÄ·½³ÌÊÇ
-x2=1(y¡Ý2)£¬
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®
¡ß
=¦Ë
£¬ÇҦˣ¾0£¬
¡àµãP±ØÄÚ·ÖÏß¶ÎAB£¬
¹ÊµãA£¬B¾ùÔÚxÖáÉÏ·½£¬
ÉèA£¨m£¬2m£©£¬B£¨-n£¬2n£©£¬m£¾0£®n£¾0£®
ÓÉ
=¦Ë
£¬µÃµãPµÄ×ø±êΪ£¨
£¬
£©£®
½«µãPµÄ´Ó±ê´úÈë
-x2=1ÖУ¬
»¯¼ò£¬µÃmn=
£®
Éè¡ÏAOB=2¦È£¬
¡ßtan(
-¦È)=2£¬
¡àtan¦È=
£¬sin2¦È=
£¬
¡ß|OA|=
m£¬|OB|=
n£¬
¡àS¡÷AOB=
|OA|•|OB|•sin2¦È
=2mn
=
(¦Ë+
)+1£®
¡ß¦Ë¡Ê[
£¬2]£¬
¡à¦Ë+
¡Ê[2£¬
]£¬
¡àS¡÷AOB¡Ê [2£¬
]£®
¡à¡÷ABCÃæ»ýµÄ×î´óֵΪ
£®
ÆäÖÐc=
| 5 |
¡àb=1£¬
¡àÇúÏßEµÄ·½³ÌÊÇ
| y2 |
| 4 |
£¨II£©ÉèQ£¨x1£¬y1£©£¬R£¨x2£¬y2£©£¬£¨y1£¬y2£¾0£©£¬
ÓÉ
|
| 4 |
| k2 |
| 8 |
| k |
µ±1-
| 4 |
| k2 |
¡à1-
| 4 |
| k2 |
¡à
|
½âµÃ
| 2 |
¡ßx1•x2=
| y1•y2 |
| k2 |
| y1+y2 |
| k |
¡à
| OQ |
| OR |
=1+
| 8k2 |
| 4-k2 |
=1-
| 8(k2-4)+32 |
| k2-4 |
=-7+
| 32 |
| 4-k2 |
¡ß
| 2 |
¡à0£¼4-k2£¼2£¬
¡à
| 1 |
| 4-k2 |
| 1 |
| 2 |
¡à
| OQ |
| OR |
£¨III£©£¨ÎÄ¿Æ×ö£©¡ßÇúÏßEµÄ·½³ÌÊÇ
| y2 |
| 4 |
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®
¡ß
| AP |
| PB |
¡àµãP±ØÄÚ·ÖÏß¶ÎAB£¬
¹ÊµãA£¬B¾ùÔÚxÖáÉÏ·½£¬
²»·ÁÉèxA£¾0£¬xB£¼0£¬
¼´A£¨xA£¬2xA£©£¬B£¨xB£¬-2xB£©£¬
ÓÉ
| AP |
| PB |
| xA+¦Ëxb |
| 1+¦Ë |
| 2(xA-¦ËxB) |
| 1+¦Ë |
½«Pµã×ø±ê´úÈë
| y2 |
| 4 |
»¯¼ò£¬µÃxA•xB=
| (1+¦Ë)2 |
| -4¦Ë |
| 1 |
| 4 |
| 1 |
| ¦Ë |
¡à|xA•xB|=
| 1 |
| 4 |
| 1 |
| ¦Ë |
| 1 |
| 3 |
¡ß¦Ë+
| 1 |
| ¦Ë |
¡à|xA•xB|min=1£®
£¨Àí¿Æ×ö£©£©¡ßÇúÏßEµÄ·½³ÌÊÇ
| y2 |
| 4 |
¡àË«ÇúÏßµÄÁ½Ìõ½¥½üÏß·½³ÌΪy=¡À2x£®
¡ß
| AP |
| PB |
¡àµãP±ØÄÚ·ÖÏß¶ÎAB£¬
¹ÊµãA£¬B¾ùÔÚxÖáÉÏ·½£¬
ÉèA£¨m£¬2m£©£¬B£¨-n£¬2n£©£¬m£¾0£®n£¾0£®
ÓÉ
| AP |
| PB |
| m-¦Ën |
| 1+¦Ë |
| 2(m+¦Ën) |
| 1+¦Ë |
½«µãPµÄ´Ó±ê´úÈë
| y2 |
| 4 |
»¯¼ò£¬µÃmn=
| (1+¦Ë)2 |
| 4¦Ë |
Éè¡ÏAOB=2¦È£¬
¡ßtan(
| ¦Ð |
| 2 |
¡àtan¦È=
| 1 |
| 2 |
| 4 |
| 5 |
¡ß|OA|=
| 5 |
| 5 |
¡àS¡÷AOB=
| 1 |
| 2 |
=2mn
=
| 1 |
| 2 |
| 1 |
| ¦Ë |
¡ß¦Ë¡Ê[
| 1 |
| 3 |
¡à¦Ë+
| 1 |
| ¦Ë |
| 10 |
| 3 |
¡àS¡÷AOB¡Ê [2£¬
| 8 |
| 3 |
¡à¡÷ABCÃæ»ýµÄ×î´óֵΪ
| 8 |
| 3 |
µãÆÀ£º±¾ÌâÖ÷Òª¿¼²éË«ÇúÏß±ê×¼·½³Ì£¬¼òµ¥¼¸ºÎÐÔÖÊ£¬Ö±ÏßÓëË«ÇúÏßµÄλÖùØÏµ£®¿¼²éÔËËãÇó½âÄÜÁ¦£¬ÍÆÀíÂÛÖ¤ÄÜÁ¦£»¿¼²é»¯¹éÓëת»¯Ë¼Ï룮¶ÔÊýѧ˼άµÄÒªÇó±È½Ï¸ß£¬ÓÐÒ»¶¨µÄ̽Ë÷ÐÔ£®×ÛºÏÐÔÇ¿£¬ÄѶȴó£¬ÊǸ߿¼µÄÖØµã£®½âÌâʱҪÈÏÕæÉóÌ⣬×Ðϸ½â´ð
Á·Ï°²áϵÁдð°¸
Ïà¹ØÌâÄ¿