题目内容
(2012•吉安县模拟)已知函数y=f(x)对任意的实数x,y都有f(x+y)=f(x)•f(y)且f(1)≠0
(1)记an=f(n),(n∈N*),Sn=
ai,设bn=
+1且{bn}为等比数列,求a1的值;
(2)在(1)的条件下,设Cn=
证明:
(i)对任意的x>0,Cn≥
-
(2an-x)n∈N*
(ii) C1+C2+…+Cn>
n∈N*.
(1)记an=f(n),(n∈N*),Sn=
| n |
| i=1 |
| 2Sn |
| an |
(2)在(1)的条件下,设Cn=
| 1 |
| 1+2an |
(i)对任意的x>0,Cn≥
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
(ii) C1+C2+…+Cn>
| n2 |
| n+1 |
分析:(1)根据f(x+y)=f(x)•f(y)对于任意的x∈R均成立,可得f(n+1)=f(n)•f(1),即an+1=an•a1,从而可得{an}是以a1为首项,a1为公比的等比数列,再利用{
}成等比数列,即可求得a1=
;
(2)在(1)的条件下,an=
,知cn=
>0,
(i)右边=
-
(
-x),化简配方可得-
(
-cn)2+cn,从而可得原不等式成立;
(ii)由(i)知,对任意的x>0,有c1+c2+…+cn≥
-
(
+
+…+
-nx),取x=
(
+
+…+
)=
=
(1-
),即可证明原不等式成立.
| b | n |
| 1 |
| 3 |
(2)在(1)的条件下,an=
| 1 |
| 3n |
| 3n |
| 3n+2 |
(i)右边=
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
| 1 |
| cn |
| 1 |
| 1+x |
(ii)由(i)知,对任意的x>0,有c1+c2+…+cn≥
| n |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3n |
| 1 |
| n |
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3n |
| ||||
n(1-
|
| 1 |
| n |
| 1 |
| 3n |
解答:解:(1)∵f(x+y)=f(x)•f(y)对于任意的x∈R均成立,
∴f(n+1)=f(n)•f(1),即an+1=an•a1.(2分)
∵f(1)≠0,∴a1≠0, ∴an≠0(n∈N*),
∴{an}是以a1为首项,a1为公比的等比数列,∴an=
.
当a1=1时,an=1,Sn=n,此时bn=2n+1,{bn}不是等比数列,∴a1≠1.
∵{
}成等比数列,
∴b1,b2,b3成等比数列,即
=b1b3.
∵b1=
+1=3,b2=
+1=
+1=
,b3=
+1=
, ∴(
)2=
解得a1=
.(5分)
(2)在(1)的条件下,an=
,知cn=
>0,
(i)
-
(
-x)=
-
(
+1-1-x)
=
-
[
-(1+x)]=-
•
+
=-
(
-cn)2+cn≤cn,
∴原不等式成立.(8分)
(ii)由(i)知,对任意的x>0,有c1+c2+…+cn≥
-
(
-x)+
-
(
-x)+…+
-
(
-x)=
-
(
+
+…+
-nx)(9分)
∴取x=
(
+
+…+
)=
=
(1-
),(11分)
则c1+c2+…+cn≥
=
>
.
∴原不等式成立.(14分)
∴f(n+1)=f(n)•f(1),即an+1=an•a1.(2分)
∵f(1)≠0,∴a1≠0, ∴an≠0(n∈N*),
∴{an}是以a1为首项,a1为公比的等比数列,∴an=
| a | n 1 |
当a1=1时,an=1,Sn=n,此时bn=2n+1,{bn}不是等比数列,∴a1≠1.
∵{
| b | n |
∴b1,b2,b3成等比数列,即
| b | 2 2 |
∵b1=
| 2S1 |
| a1 |
| 2(a1+a2) |
| a2 |
2(a1+
| ||
|
| 3a1+2 |
| a1 |
2(a1+
| ||||
|
3
| ||
|
| 3a1+2 |
| a1 |
9
| ||
|
解得a1=
| 1 |
| 3 |
(2)在(1)的条件下,an=
| 1 |
| 3n |
| 3n |
| 3n+2 |
(i)
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
=
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 1 |
| cn |
| 1 |
| cn |
| 1 |
| (1+x)2 |
| 2 |
| 1+x |
=-
| 1 |
| cn |
| 1 |
| 1+x |
∴原不等式成立.(8分)
(ii)由(i)知,对任意的x>0,有c1+c2+…+cn≥
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3 |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 32 |
| 1 |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3n |
| n |
| 1+x |
| 1 |
| (1+x)2 |
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3n |
∴取x=
| 1 |
| n |
| 2 |
| 3 |
| 2 |
| 32 |
| 2 |
| 3n |
| ||||
n(1-
|
| 1 |
| n |
| 1 |
| 3n |
则c1+c2+…+cn≥
| n | ||||
1+
|
| n2 | ||
n+1-
|
| n2 |
| n+1 |
∴原不等式成立.(14分)
点评:本题考查数列与不等式的综合,考查赋值法的运用,考查等比数列的求和公式,解题的关键是利用配方法证明不等式,属于中档题.
练习册系列答案
相关题目