题目内容
已知数列{an}的前n项和为Sn,首项a1=1,且对于任意n∈N+都有nan+1=2Sn.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
,且数列{bn}的前n项之和为Tn,求证:Tn<
.
(Ⅰ)求{an}的通项公式;
(Ⅱ)设bn=
| 4an+1 |
| an2an+22 |
| 5 |
| 4 |
分析:(Ⅰ)法一:由nan+1=2Sn,得当n≥2时,(n-1)an=2Sn-1,所以nan+1-(n-1)an=2(Sn-Sn-1)=2an,故nan+1=(n+1)an,由此能求出an.
法二:由nan+1=2Sn及an+1=Sn+1-Sn,得nSn+1=(n+2)Sn,故
=
,由此能求出an.
(Ⅱ)依题意得bn=
=
=
-
,由此能够证明Tn<
.
法二:由nan+1=2Sn及an+1=Sn+1-Sn,得nSn+1=(n+2)Sn,故
| Sn+1 |
| Sn |
| n+2 |
| n |
(Ⅱ)依题意得bn=
| 4an+1 |
| an2an+22 |
| 4n+4 |
| n2(n+2)2 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
| 5 |
| 4 |
解答:解:(Ⅰ)解法一:由nan+1=2Sn①
得当n≥2时,(n-1)an=2Sn-1②,
由①-②可得,nan+1-(n-1)an=2(Sn-Sn-1)=2an,
所以nan+1=(n+1)an,
即当n≥2时,
=
,
所以
=
,
=
,
=
,…,
=
,
将上面各式两边分别相乘得,
=
,
即an=
•a2(n≥3),
又a2=2S1=2a1=2,所以an=n(n≥3),
此结果也满足a1,a2,
故an=n对任意n∈N+都成立.…(7分)
解法二:由nan+1=2Sn及an+1=Sn+1-Sn,
得nSn+1=(n+2)Sn,
即
=
,
∴当n≥2时,Sn=S1•
•
•…•
=1×
×
×
×…×
=
(此式也适合S1),
∴对任意正整数n均有Sn=
,
∴当n≥2时,an=Sn-Sn-1=n(此式也适合a1),
故an=n.…(7分)
(Ⅱ)依题意可得bn=
=
=
-
∴Tn<
.…(13分)
得当n≥2时,(n-1)an=2Sn-1②,
由①-②可得,nan+1-(n-1)an=2(Sn-Sn-1)=2an,
所以nan+1=(n+1)an,
即当n≥2时,
| an+1 |
| an |
| n+1 |
| n |
所以
| a3 |
| a2 |
| 3 |
| 2 |
| a4 |
| a3 |
| 4 |
| 3 |
| a5 |
| a4 |
| 5 |
| 4 |
| an |
| an-1 |
| n |
| n-1 |
将上面各式两边分别相乘得,
| an |
| a2 |
| n |
| 2 |
即an=
| n |
| 2 |
又a2=2S1=2a1=2,所以an=n(n≥3),
此结果也满足a1,a2,
故an=n对任意n∈N+都成立.…(7分)
解法二:由nan+1=2Sn及an+1=Sn+1-Sn,
得nSn+1=(n+2)Sn,
即
| Sn+1 |
| Sn |
| n+2 |
| n |
∴当n≥2时,Sn=S1•
| S2 |
| S1 |
| S3 |
| S2 |
| Sn |
| Sn-1 |
| 3 |
| 1 |
| 4 |
| 2 |
| 5 |
| 3 |
| n+1 |
| n-1 |
| n(n+1) |
| 2 |
∴对任意正整数n均有Sn=
| n(n+1) |
| 2 |
∴当n≥2时,an=Sn-Sn-1=n(此式也适合a1),
故an=n.…(7分)
(Ⅱ)依题意可得bn=
| 4an+1 |
| an2an+22 |
| 4n+4 |
| n2(n+2)2 |
| 1 |
| n2 |
| 1 |
| (n+2)2 |
|
∴Tn<
| 5 |
| 4 |
点评:本题考查数列的通项公式的求法,考查数列的前n项和的求法和不等式的证明.解题时要认真审题,仔细解答,注意等价转化思想的合理运用.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |