题目内容

已知点P是以F1、F2为左、右焦点的双曲线
x2
a2
-
y2
b2
=1(a>0,b>0)
左支上一点,且满足PF1⊥PF2,且|PF1|:|PF2|=2:3,则此双曲线的离心率为(  )
A、
2
B、
3
C、
5
D、
13
分析:根据双曲线的定义可知|PF2|-|PF1|=2a,进而根据|PF1|:|PF2|=2:3,分别求得|PF2|和|PF1|,进而根据勾股定理建立等式求得a和c的关系,则离心率可得.
解答:解:由|P
F
 
2
|-|P
F
 
1
|=2a,
|P
F
 
1
|
|P
F
 
2
|
=
2
3
得|PF2|=6a,|PF1|=4a;
在RT△PF1F2中,|F1F2|2=|PF1|2+|PF2|2
∴4c2=36a2+16a2,解得e=
13

故选D
点评:本题主要考查了双曲线的应用.考查了学生对双曲线定义和基本知识的掌握.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网