搜索
题目内容
函数
f
(
x
)=
x
3
-2
x
2
+
x
-6的单调增区间为__________.
试题答案
相关练习册答案
解析:
f
′(
x
)=3
x
2
-4
x
+1>0得
x
<
或
x
>1.
答案:(-∞,
)及(1,+∞).
练习册系列答案
浙江省各地期末试卷精选系列答案
招牌题题库系列答案
怎样学好牛津英语系列答案
运算升级卡系列答案
学业水平标准与考试说明系列答案
云南省小学毕业总复习与检测系列答案
初中学业水平考试复习指导手册系列答案
点击中考系列答案
预学寓练系列答案
标准大考卷系列答案
相关题目
已知函数f(x)=-x
3
+ax
2
+bx+c在(-∞,0)上是减函数,在(0,1)上是增函数,函数f(x)在R上有三个零点.
(1)求b的值;
(2)若1是其中一个零点,求f(2)的取值范围;
(3)若a=1,g(x)=f′(x)+3x
2
+lnx,试问过点(2,5)可作多少条直线与曲线y=g(x)相切?请说明理由.
(2007•东城区一模)已知函数f(x)=x
3
+ax
2
+bx+c,曲线y=f(x)在点x=1处的切线l不过第四象限且斜率为3,又坐标原点到切线l的距离为
10
10
,若x=
2
3
时,y=f(x)有极值.
(1)求a,b,c的值;
(2)求y=f(x)在[-3,1]上的最大值和最小值.
(2013•宁波模拟)已知函数f(x)=x
3
+ax
2
-a
2
x+2,a∈R.
(1)若a<0时,试求函数y=f(x)的单调递减区间;
(2)若a=0,且曲线y=f(x)在点A、B(A、B不重合)处切线的交点位于直线x=2上,证明:A、B 两点的横坐标之和小于4;
(3)如果对于一切x
1
、x
2
、x
3
∈[0,1],总存在以f(x
1
)、f(x
2
)、f(x
3
)为三边长的三角形,试求正实数a的取值范围.
设函数f(x)=x
3
-3ax+b(a≠0),已知曲线y=f(x)在点(2,f(x))处在直线y=8相切.
(Ⅰ)求a,b的值;
(Ⅱ)求函数f(x)的单调区间与极值点.
对于函数f(x)=x
3
+ax
2
-x+1的极值情况,4位同学有下列说法:甲:该函数必有2个极值;乙:该函数的极大值必大于1;丙:该函数的极小值必小于1;丁:方程f(x)=0一定有三个不等的实数根. 这四种说法中,正确的个数是( )
A.1个
B.2个
C.3个
D.4个
关 闭
试题分类
高中
数学
英语
物理
化学
生物
地理
初中
数学
英语
物理
化学
生物
地理
小学
数学
英语
其他
阅读理解答案
已回答习题
未回答习题
题目汇总
试卷汇总
练习册解析答案