题目内容

已知f(x)=
a2x-1
2x+1
(a∈R)
,是R上的奇函数.
(1)求a的值;
(2)求f(x)的反函数;
(3)对任意的k∈(0,+∞)解不等式f-1(x)>log2
1+x
k
分析:(1)由题知奇函数在R上有定义,故图象过原点,所以f(0)=0,解得a=1;
(2)令y=
a2x-1
2x+1
(a∈R)
,依据反函数的定义解出f(x)的反函数的表达式.
(3)由(2)知f-1(x)=log2
1+x
1-x
(-1<x<1)
由此知两边底数一致,故可以用相关函数的单调性进行转化.
解答:解:(1)由题知f(0)=0,得a=1,
此时f(x)+f(-x)=
2x-1
2x+1
+
2-x-1
2-x+1
=
2x-1
2x+1
+
1-2x
1+2x
=0

即f(x)为奇函数.
(2)∵y=
2x-1
2x+1
=1-
2
2x+1
,得2x=
1+y
1-y
(-1<y<1)

f-1(x)=log2
1+x
1-x
(-1<x<1)

(3)∵f-1(x)>log2
1+x
k
,∴
1+x
1-x
1+x
k
-1<x<1
,∴
x>1-k
-1<x<1

①当0<k<2时,原不等式的解集{x|1-k<x<1},
②当k≥2时,原不等式的解集{x|-1<x<1}.
点评:本题考点是反函数,考查反函数解析式的求法以及解对数不等式,反函数的求法用反函数的定义,解对数不等式要根据对数的单调性进行转化.
练习册系列答案
相关题目

违法和不良信息举报电话:027-86699610 举报邮箱:58377363@163.com

精英家教网