题目内容
12、函数f(x)=lnx+3x-6的零点有
1
个.分析:要求函数的零点,只要使得函数等于0,移项变成等号两个边分别是两个基本初等函数,在同一个坐标系中画出函数的图象,看出交点的个数.
解答:解:∵f(x)=lnx+3x-6=0
∴-3x+6=lnx
令y1=lnx,y2=-3x+6
根据这两个函数的图象在同一个坐标系中的位置关系知,
两个图象有一个公共点,
∴原函数的零点的个数是1
故答案为:1
∴-3x+6=lnx
令y1=lnx,y2=-3x+6
根据这两个函数的图象在同一个坐标系中的位置关系知,
两个图象有一个公共点,
∴原函数的零点的个数是1
故答案为:1
点评:本题考查函数的零点,解题的关键是把一个函数变化为两个基本初等函数,利用数形结合的方法得到结果.
练习册系列答案
相关题目