题目内容
已知数列{an}的各项均为正数,它的前n项和Sn满足Sn=| 1 | 6 |
(1)求数列{an}的通项公式;
(2)设bn=(-1)n+1anan+1,Tn为数列{bn}的前n项和,求T2n.
分析:(1)根据Sn=
(an+1)(an+2)可类比的得到Sn-1=
(an-1+1)(an-1+2),然后两式相减得到(an+an-1)(an-an-1-3)=0,再由{an}的各项均为正数,可得到an-an-1=3,再由等差数列的通项公式法可得到答案.
(2)先根据bn=(-1)n+1anan+1,可得到T2n=b1+b2+…+b2n=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,再由等差数列的前n项和公式可得到答案.
| 1 |
| 6 |
| 1 |
| 6 |
(2)先根据bn=(-1)n+1anan+1,可得到T2n=b1+b2+…+b2n=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1,再由等差数列的前n项和公式可得到答案.
解答:解:(1)∵对任意n∈N*,有Sn=
(an+1)(an+2)①当n≥2时,
有Sn-1=
(an-1+1)(an-1+2)②
当①-②并整理得(an+an-1)(an-an-1-3)=0,
而{an}的各项均为正数,所以an-an-1=3.
∴当n=1时,有S1=a1=
(a1+1)(a1+2),解得a1=1或2,
当a1=1时,an=1+3(n-1)=3n-2,此时a42=a2a9成立;
当a1=2时,an=2+3(n-1)=3n-1,此时a42=a2a9不成立;舍去.
所以an=3n-2,n∈N*,
(2)T2n=b1+b2+…+b2n
=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1)
=-6a2-6a4-…-6a2n=-6(a2+a4+…+a2n)
=-6×
=-18n2-6n.
| 1 |
| 6 |
有Sn-1=
| 1 |
| 6 |
当①-②并整理得(an+an-1)(an-an-1-3)=0,
而{an}的各项均为正数,所以an-an-1=3.
∴当n=1时,有S1=a1=
| 1 |
| 6 |
当a1=1时,an=1+3(n-1)=3n-2,此时a42=a2a9成立;
当a1=2时,an=2+3(n-1)=3n-1,此时a42=a2a9不成立;舍去.
所以an=3n-2,n∈N*,
(2)T2n=b1+b2+…+b2n
=a1a2-a2a3+a3a4-a4a5+…-a2na2n+1
=a2(a1-a3)+a4(a3-a5)+…+a2n(a2n-1-a2n+1)
=-6a2-6a4-…-6a2n=-6(a2+a4+…+a2n)
=-6×
| n(4+6n-2) |
| 2 |
点评:本题主要考查数列递推关系式的应用和等差数列的求和公式的应用.考查综合运用能力.
练习册系列答案
相关题目