题目内容
已知数列{an}的前n项和为Sn,a1=1,Sn=nan-n(n-1)(n∈N*).(Ⅰ) 求数列{an}的通项公式;
(Ⅱ) 设bn=
【答案】分析:(Ⅰ)Sn=nan-n(n-1)(n∈N*)①.当n≥2时,Sn-1=(n-1)an-1-(n-1)(n-2)②,两式相减,得出数列的递推关系式,再求通项公式.
(Ⅱ) bn=
=
=
裂项后求和,
解答:解:(Ⅰ)Sn=nan-n(n-1)(n∈N*)①.
当n≥2时,Sn-1=(n-1)an-1-(n-1)(n-2)②
①-②得an=nan-(n-1)an-1-(n-1)×2
移向,两边同除以n-1得出an-a n-1=2
所以数列{an}是以2为公差的等差数列,
通项公式为an=a1+2(n-1)=2n-1
(Ⅱ) bn=
=
=

Tn=
[
+
+…
]
=
(1-
)
=
点评:本题考查了数列通项公式求解,裂项求和法,考查转化,计算能力.
(Ⅱ) bn=
解答:解:(Ⅰ)Sn=nan-n(n-1)(n∈N*)①.
当n≥2时,Sn-1=(n-1)an-1-(n-1)(n-2)②
①-②得an=nan-(n-1)an-1-(n-1)×2
移向,两边同除以n-1得出an-a n-1=2
所以数列{an}是以2为公差的等差数列,
通项公式为an=a1+2(n-1)=2n-1
(Ⅱ) bn=
Tn=
=
=
点评:本题考查了数列通项公式求解,裂项求和法,考查转化,计算能力.
练习册系列答案
相关题目
已知数列{an}的前n项和Sn=an2+bn(a、b∈R),且S25=100,则a12+a14等于( )
| A、16 | B、8 | C、4 | D、不确定 |